

Environnement et Changement climatique Canada

Air Quality & Greenhouse Gas Observations from <u>AIM-North</u>

Ray Nassar¹, Dylan B.A. Jones², Chris McLinden¹, Chris Sioris¹, Ryan Cooney³, Helena van Mierlo³, Natasha Jackson³, Ralph Girard³, Joseph Mendonca¹, Feng Deng², Saroja Polavarapu¹, C. Thomas McElroy⁴, Cristen Adams⁵, J.F. Blavier⁶, Céline Boisvenue⁷, Adam Bourassa⁸, Doug Degenstein⁸, Guillaume Drolet⁹, Louis Garand¹, Markey Johnson¹⁰, Felicia Kolonjari¹, Bruce Kuwahara¹¹, Randall V. Martin¹², Cameron MacDonald¹¹, Charles E. Miller⁶, Norm O'Neill¹³, Aku Riihelä¹⁴, Sebastien Roche², Yves Rochon¹, Stanley P. Sander¹¹, William R. Simpson¹⁵, Gurpreet Singh⁴, Kim Strong², Johanna Tamminen¹⁴, Alexander Trishchenko⁷, Zahra Vaziri⁴, Kaley A. Walker², and Debra Wunch²

¹Environment and Climate Change Canada, ²University of Toronto, ³Canadian Space Agency, ⁴York University, ⁵Alberta Environment and Parks, ⁶Jet Propulsion Laboratory / California Institute of Technology, ⁷Natural Resources Canada,⁸University of Saskatchewan, ⁹Québec Ministère des Forêts, de la Faune et des Parcs, ¹⁰Health Canada, ¹¹University of Waterloo, ¹²Dalhousie University, ¹³Université de Sherbrooke, ¹⁴Finnish Meteorological Institute, ¹⁵University of Alaska at Fairbanks

CEOS AC-VC Meeting, June 11, Tokyo, Japan

Carbon Cycle and Air Quality in the North

Night light imagery from VIIRS http://earthobservatory.nasa.gov/Features/IntotheBlack/

- Increasing anthropogenic activity (transport, resource extraction) in the north in a warming climate will result in increasing emissions of GHGs, AQ gases, and aerosols.
- Wildfires are major source of air pollution in spring and summer. Increases in the number and severity of these fires will have implications for air quality and the Canadian carbon cycle.

AIM-North AQ-GHG Synergies

Two mission objectives:

- Better quantify emissions and separate CO₂ emissions from anthropogenic versus biospheric sources (respiration and wildfires) with the help of CO, NO₂, SIF or other supporting observations.
- Improve estimation of northern anthropogenic CO₂ and CH₄ emissions at the scale of a municipality or large industrial source.

CO and CO₂

Rayner et al. (2014) and other work studied CO/CO₂ ratios for constraining urban anthropogenic emissions and found substantial benefits.

NO_2 and CO_2

- NO₂ might actually be more useful, with applications such as characterizing CO₂ plume shape and identifying wind direction as demonstrated in recent studies like Reuter et al. (2019) for anthropogenic emissions and wildfires.
- The impact of temporal offsets of a few minutes between NO₂ and CO₂ if they are measured by different instruments, with different scanning strategies, will be studied later in Phase 0 or Phase A.

P.J. Rayner, S.R. Utembe, S. Crowell (2014), Constraining regional greenhouse gas emissions using geostationary concentration measurements: a theoretical study, Atmos. Meas. Tech., 7, 3285–3293, 2014, www.atmos-meas-tech.net/7/3285/2014/

Reuter, M., et al.: Towards monitoring localized CO₂ emissions from space: co-located regional CO₂ and NO₂ enhancements observed by the OCO-2 and S5P satellites, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-15, in review, 2019.

2019		21 202				. 2026 ?	
CSA Phase Names	Phase 0 (Pre-Phase A)	Phase A	Phase B	Phase C	Phase D	Phase E	Phase F
Description	Mission Definition	System Definition	Preliminary Design	Detailed Design	Manufacturing, Assembly, Integration, Testing, Launch, Commissioning	Operations	Disposal

- Mission Objectives Document (MOD) with objectives and observing requirements
- ~18-month study with focus on instrument technologies and configuration:
 - Option 1) Imaging Fourier Transform Spectrometer (GHGs) + Dispersive (AQ)
 - Option 2) Dispersive (GHG) + Dispersive (AQ) Instrument
 - Option 3) Combined Dispersive (GHG and AQ)
 - Cloud imager is now baselined to inform pointing decisions
- CSA is funding 3 AIM-North science contracts:
 - CH₄ and CO Retrievals: U. Toronto (D. Wunch, K. Strong)
 - NO₂ and O₃ Retrievals: U. Saskatchewan (D. Degenstein, A. Bourassa)
 - CO₂ Observing System Simulation Experiment: U. Toronto (D. Jones, F. Deng)
- ECCC science: CO₂ / SIF retrievals, orbits, intelligent pointing, point source estimation
- User Requirements Document (URD) soon to be developed by full science team

AIM-North Air Quality Species Requirements

UV-Vis Dispersive instrument spanning ~290-780 nm ~0.75 nm spectral resolution and ~0.25 nm spectral sampling

Species	Single Obs Precision (1σ)	Accuracy
O ₃ (TC)	3% (G), 5% (T)	2% (G), 3% (T)
O ₃ (SC)	3% (G), 5% (T)	20% (G), 30% (T)
NO ₂ (TC)	3% (G), 5% (T)	10% (G), 15% (T)
NO ₂ (SC)	1.0x10 ¹⁵ cm ⁻² (G), 1.5x10 ¹⁵ cm ⁻² (T)	15% (G), 20% (T)
AOD (C)	0.03 + 15% (G), 0.05 + 20% (T)	0.03 (G), 0.05 (T)
SO ₂ (C) (secondary)	1.0x10 ¹⁶ cm ⁻² (G), 1.5x10 ¹⁶ cm ⁻² (T)	2×10 ¹⁵ cm ⁻² (G), 3×10 ¹⁵ cm ⁻² (T)

*(TC) = Tropospheric Column, (SC) = Stratospheric Column, (C) = Total Colum (G) = Goal, (T) = Threshold

Other secondary species without requirements: HCHO, BrO, OCIO, CHOCHO. Complementary NIR-SWIR instrument for CO₂, CH₄, CO, SIF & aerosols (see Monday's AIM-North talk)

Air Quality Retrieval Studies

- U of Saskatchewan developing L1-->L2 retrievals for total column O₃ and NO₂. Together with an AIM-North UV-vis grating instrument simulator and realistic observing conditions, quantifying SNR and other requirements to determine impacts of changes in instrument design
- Expansion to additional UV-vis species is possible in the near future

N. Lloyd, D. Degenstein, A. Bourassa

CO₂ OSSEs for AIM-North

- Past Observing System Simulation Experiment assessed earlier HEO concept for constraining Arctic-Boreal CO₂ fluxes (*Nassar et al.* 2014)
- New OSSES include improved method for simulating observations: orbit, precision, bias, cloud filtering and albedo, etc. (R. Nassar, C. MacDonald)
- Nature run: Environment Canada Carbon Assimilation System (EC-CAS) simulation for 2015 at 0.45° x 0.45° (S. Polavarapu, M. Neish), driven with CarbonTracker fluxes plus extra permafrost emissions of 0.9 Pg C (R. Nassar, C. MacDonald)

These are permafrost regions that are experiencing rapid thawing (Turetsky et al., 2019).

CO₂ OSSEs for AIM-North

AIM-North Pseudo-data & OSSE

- 2 satellites in HEO.
- Molniya 12 hour orbit with 4 apogees.
- IFTS FOV 128 x 128 pixels with 3 minute stare.
- Intelligent pointing
- Pseudo-data assimilated using the GEOS-Chem 4D-Var assimilation scheme to estimate 14-day fluxes.
- Conducted a global assimilation at 2° x 2.5° and a regional assimilation at 0.25° x 0.3125° over Canada.

Bruce Kuwahara

CO₂ OSSEs: Global (2°x2.5°)

 Global OSSE: assess the potential to recover CO₂ flux magnitude and seasonality for the northern terrestrial biosphere overall including permafrost emissions.

Prior terrestrial biospheric fluxes (13-27 Sept)

Posterior terrestrial biospheric fluxes (13-27 Sept)

CO₂ OSSEs: Regional (0.25°x0.3125°)

Regional OSSE: assess whether the sub-daily revisit times can provide constraints on diurnal variations in the fluxes.

GEOS-CO2 at 0 GMT on 15 June 2015 at 500 hPa

Fluxes at 50°N, 115°W

Summary and Potential Path Forward

- AIM-North would provide quasi-geostationary observations of AQ and GHG species over northern land (~40-80°N).
- AQ-GHG synergies through CO & CO₂ and NO₂ & CO₂ observations by instruments on the same spacecraft.
- OSSEs show AIM-North CO₂ observations could provide strong constraints on Arctic and Boreal CO₂ fluxes including the ability to estimate permafrost CO₂ emissions, while 3x3 km² to 4x4 km² pixels are small enough for point source or urban studies.

Government of Canada Members

- Ray Nassar (Environment and Climate Change Canada) PI and greenhouse gas (GHG) observations
- Chris McLinden (ECCC) Air quality (AQ) species observations
- Chris Sioris (ECCC) Retrievals and Analysis and instrument configuration
- Helena van Mierlo (Canadian Space Agency) CSA Study Manager
- Ryan Cooney (CSA) CSA Study Lead
- Ralph Girard (CSA) CSA Portfolio Manager
- Natasha Jackson (CSA) Mission Design Engineer
- Marcus Dejmek (CSA) CSA Science Liaison
- Louis Garand (ECCC) Potential meteorological enhancements
- Joseph Mendonca (ECCC) Validation and GHG Retrievals
- Saroja Polavarapu (ECCC) Modelling and Assimilation for GHGs
- Felicia Kolonjari (ECCC) Inter-departmental/International collaboration and policy
- Yves Rochon (ECCC) Modelling and Assimilation for Air Quality
- Alexander Trichtchenko (Natural Resources Canada, Canada Centre for Mapping and Earth Observation) Orbits
- Céline Boisvenue (Natural Resources Canada, Canadian Forest Service) SIF observations over forests
- Markey Johnson (Health Canada) Air quality impacts on health

Canadian Provincial Government Members

- Cristen Adams (Alberta Environment and Parks) Air quality observations
- Guillaume Drolet (Québec Ministère des Forêts, de la Faune et des Parcs) SIF observations over forests

University Members

- Tom McElroy (York University) Pointing, Imaging FTS, sub-orbital testing
- Kaley Walker (University of Toronto) FTS and Arctic Science
- Debra Wunch (University of Toronto) GHG retrievals and GHG validation
- Kim Strong (University of Toronto) GHG retrievals and trace gas validation
- Norm O'Neill (Université de Sherbrooke) Aerosols
- Dylan Jones (University of Toronto) Modelling and Assimilation for GHGs and AQ
- Feng Deng (University of Toronto) Modelling and Assimilation for GHGs
- Randall Martin (Dalhousie University) Modelling and Assimilation for Air Quality
- Doug Degenstein (University of Saskatchewan) Air quality gas retrievals
- Adam Bourassa (University of Saskatchewan) Air quality gas retrievals
- Bruce Kuwahara (University of Waterloo, student) Orbits and Pointing Strategies
- Cameron MacDonald (University of Waterloo, student) Orbits and Pointing Strategies
- Sebastien Roche (University of Toronto, student) CO and CH₄ Retrievals
- Nicholas Lloyd (University of Saskatchewan, student) Air quality gas retrievals
- Zahra Vaziri (York University, student) Pointing, Imaging FTS, sub-orbital testing
- Gurpreet Singh (York University, student) Pointing, Imaging FTS, sub-orbital testing International Members
- Johanna Tamminen (Finnish Meteorological Institute) Analysis of GHG and AQ data
- Aku Riihelä (Finnish Meteorological Institute) Cloud imager and data
- Charles E. Miller (NASA/JPL) Arctic and Boreal Carbon Cycle Science
- Stanley Sander (NASA/JPL) Imaging FTS
- Jean-Francois Blavier (NASA/JPL) Imaging FTS
- William Simpson (University of Alaska at Fairbanks) Arctic Atmosphere and Carbon Cycle

Industry Team:

http://www.aim-north.ca ray.nassar@canada.ca

AIM-North Team