A-CCP Aerosols and Clouds-Convection-Precipitation Study

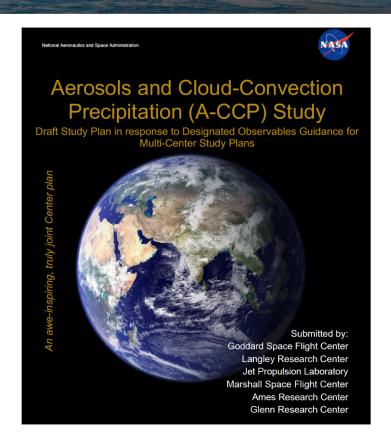
An Overview of the Aerosol and Clouds-Convection-Precipitation Study (A-CCP) and its Relationship to the Geosstationary AC-VC

Arlindo da Silva, Scott Brown, Dalia Kirschbaum (GSFC)

Graeme Stephens, Duane Waliser (JPL)

Richard Ferrare, David Winker, Ali Omar (LaRC)

Walt Petersen (MSFC), Meloë Kacenelenbogen (ARC)


Science/Applications Leadership Team (SALT)

CEOS AC-VC 15 – Tokyo, Japan

12 June 2019

Outline

- 1. 2017 Decadal Survey Designated Observables
- 2. The A-CCP Study:
 - Structure and Approach
- 3. The SATM
 - Overarching Science Goals
 - A-CCP Science objectives
- 4. Concluding Remarks

Thriving on Our Changing Planet

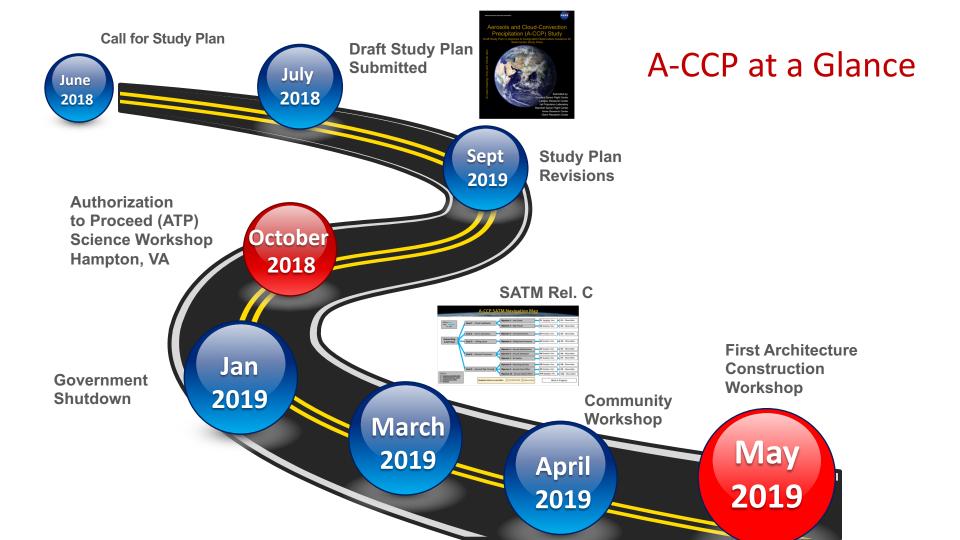
A Decadal Strategy for Earth Observation from Space

Available from http://sites.nationalacademies.org/DEPS/ESAS2017

Recommended NASA Flight Program Elements

Program of Record. The series of existing or previously planned observations, which should be completed as planned. Execution of the ESAS 2017 recommendation requires that the total cost to NASA of the Program of Record flight missions from FY18-FY27 be capped at \$3.6B.

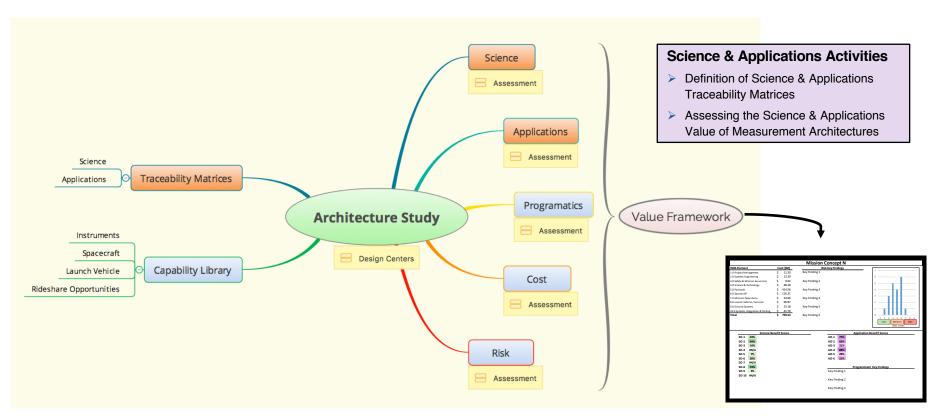
- Designated. A new program element for ESAS-designated cost-capped medium- and large-size missions to address observables essential to the overall program and that are outside the scope of other opportunities in many cases. Can be competed, at NASA discretion.
- **Earth System Explorer.** A <u>new</u> program element involving competitive opportunities for medium-size instruments and missions serving specified ESAS-priority observations. **Promotes competition among priorities.**
- *Incubation.* A <u>new</u> program element, focused on investment for priority observation opportunities needing advancement prior to cost-effective implementation, including an Innovation Fund to respond to emerging needs. *Investment in innovation for the future*.
- Venture. Earth Venture program element, as recommended in ESAS 2007 with the addition of a <u>new</u> Venture-Continuity component to provide opportunity for low-cost sustained observations.


Designated Observables from 2017 DS

DO	Summary Candidate Measureme	nt
Aerosols	Aerosol properties, aerosol vertical profiles, and cloud properties to understand their eff Transition to missions in 2022 Time Frame Backscatter lidar and multi- channel/multi-angle/polarization toge	on ether ≤ \$800M
Clouds, Convection,	Coupled with a possible second stage in 2024-2027 Jency dynamics for monitoring global hydrological passive microwave and sub-microwave an	
and	cycle and understanding contributing radiometer processes including cloud feedback	≤\$800M
	Large-scale Earth dynamics measured by Spacecraft ranging measurement	nt of
Mass Change	the chan between Transition to missions in 2 024-2027 time frame	≤ \$300M
	ground water, and ice sheets Forth surface goals are and highests. Hypersurface goals are and highests.	inilala
Surface Biology and Geology	Earth surface geology and biology. Ground/v active ge Transition to missions in 2021 time frame the	
	and algal biomass thermal IR	
Surface Deformation		4 6 5 6 6 6
and Change	correction	

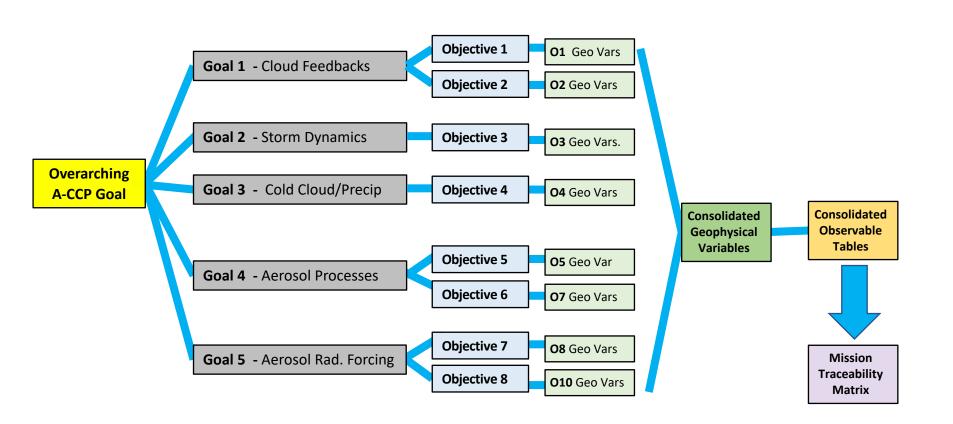
Decadal Survey Aerosol Themes and Objectives

Table 1-1: Most Important (MI) Decadal Survey Science Objectives of relevance to the Aerosol Designated Observable.


Theme	Science Objectives
Climate	• Reduce aerosol radiative forcing uncertainty by a factor of two (C-2h)
Variability	• Quantify the contribution of the upper troposphere and stratosphere to climate feedbacks and change (C-2g)
and Change	• Improve estimates of the emissions of natural and anthropogenic aerosols and their precursors via observational con-
	straints (C-5a)
	• Quantify the effects of aerosols on cloud formation, height, and properties (C-5c)
	• Reduce uncertainties in low and high cloud feedback by a factor of two (C-2a)
Weather	• Determine the effects of key boundary layer processes on weather, hydrological, and air quality forecasts (W-1a)
and Air	• Improve the observed and modeled representations of natural, low-frequency modes of weather/climate variability (W-2a)
Quality	• Improve our understanding of the processes that determine air pollution distributions and reduce uncertainties in PM
	concentrations (W–5a)

Constraints on the A-CCP Study

- The 2017 Decadal Survey (DS) recommended cost-capped missions with specified caps, so challenge for team to envision new science but ensure an implementable observing system
- The DS prioritized science objectives:
 - most important, very important, and important objectives
- NASA HQ has determined that instruments will be competed rather than designed to SATM (must be TRL-6 by PDR ca. 2023)
 - SATM will define appropriate *desired minimum capabilities* (not requirements)
- Finding an observing system that meets objectives is ultimately dependent on knowledge of available capabilities (Instrument Library)


A-CCP Study: Approach

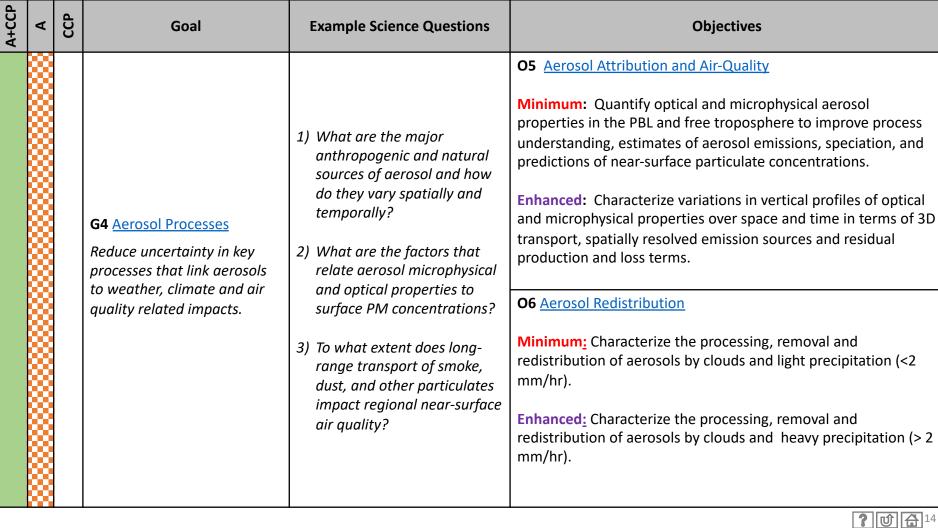
A-CCP Framing Assumptions

- A-CCP is a combined Aerosols and CCP process-oriented Earth Observing System
- Payload may consist of:
 - Active sensors (lidars and radars) are the cornerstones of the payload, complemented by
 - b) Several passive radiometers (multi-angle, multi/hyper-spectral, with some polarized channels, from UV to sub-mm)
- Being a process oriented mission, some of the instruments may have a narrow swath needed to provide context to the measurements (as opposed to wide swath needed for mapping)
- A-CCP is an Earth Observing System potentially consisting of
 - a) A space-based mission (payload, spacecraft, launch vehicle)
 - b) A fully integrated, sustained sub-orbital component
 - c) Models, data assimilation and synergistic algorithms needed to extract maximum benefits from the A-CCP measurements

SATM Development Process

Public Releases of the SATM

- Available from:
 - https://science.nasa.gov/earth-science/decadal-surveys/
- Distributed to:
 - > National and International invitees of Community Workshop
 - Members of Science Community Cohort (SCC)
 - Other center senior scientists not directly involved in A-CCP
- Feedback collected by
 - ➤ Google forms
 - ➤ Email: a-ccp-comments@lists.nasa.gov
 - > Written comments compiled SCC co-chairs (who are embedded in the SALT)
 - > Listening sessions with senior scientists not involved at A-CCP (GSFC & GISS)


Overarching A-CCP Goal	d>+CCP	٧	dDD	2017 DS Most Important Very Important	Goals
				C-2a, C-2g, W-1a, W-2a	G1 Cloud Feedbacks Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds.
Understand the processing of				C-2g, C-5c, H-1b, W-1a, W-2a, W-4a	G2 Storm Dynamics Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within deep convective storms.
water and aerosol through the atmosphere and develop the societal applications				H-1b, W-1a, W-3a, S-4a	G3 Cold Cloud and Precipitation Improve understanding of cold (supercooled liquid, ice, and mixed phase) cloud processes and associated precipitation and their coupling to the surface at mid to high latitudes and to the cryosphere.
enabled from this understanding.				W-1a, W-5a, C-5a	G4 <u>Aerosol Processes</u> Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.
		6 –		<u>C-2h, C-5c</u>	G5 <u>Aerosol Impacts on Radiation</u> Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.

Goal only fully realizable via combined mission.

A or CCP makes meaningful contribution to goal

Relevant PoR for A-CCP Objectives 5 & 6

Geostationary Orbit

Mission Family	Agency	Relevant Instruments	Ops Period	Notes
GOES 15-19	NOAA	Multi-purpose Imaging rad (VIS/IR), Lightning imager	2010 - 2040	North and South America sector
Meteosat (MTG 11-14)	EUMETSAT, ESA	Multi-purpose Imaging rad (VIS/IR), Lightning imager	2021 - >2040	Europe and Africa sector
Himawari 8-9	JMA, JAXA	Multi-purpose Imaging rad (VIS/IR)	2014 - 2031	Western Pacific Ocean sector
GEO-KOMPSAT 2A	KARI, KORI, NIER	Multi-purpose Imaging rad (VIS/IR)	2019 - 2029	Western Pacific Ocean sector
GEO-KOMPSAT 2B: O AMI O GEMS/GOCI	KARI, KORI, NIER	 Multi purpose Imaging Rad (VIS/IR) Nadir-scanning UV-VIS spectrometer 	2019-	Full diskNE AsiaKorean Peninsula
TEMPO	NASA	Nadir-scanning UV-VIS spectrometer	TBD	CONUS sector only
Sentinel 4 A-B	ESA, COM	Scanning Spectrometer (UV/VIs)	2023 - 2039	Europe and Africa sector

Relevant PoR for A-CCP Objectives 5 & 6

Low Earth Orbit

Mission Family	Agency	Relevant Instruments	Ops Period	Notes
JPSS 2-4	NOAA	Imager (Vis/IR), IR Spec, MW Rad, Broadband Rad	2022 - 2040	Eq crossing: ~02:30 pm
Metop (SG A1/A2)	EUMETSAT, ESA, DLR, CNES, COM	Imager (Vis/IR), IR Spec, MW Rad, Broadband Rad, Polarimeter (3MI: VNIR,SWIR)	2021 - >2040	Eq crossing: ~10:30 am
Sentinel 2 B-C	ESA, COM	Imager (Vis/IR)	2017 - 2029	Eq crossing: ~10:30 am
Sentinel 3 B-C	ESA, EUMETSAT, COM	Spectro-Rad,	2018 - 2029	Eq crossing: ~ 10 am
Sentinel 5 A-B	ESA, COM	Scanning Spectrometer (UV/VIS)	2021 - 2030	Eq crossing: ~9:30 am
PACE OCI	NASA	Ocean Color Radiometer (UV,VIS,SWIR)		Eq crossing: ~1 pm

O5 Aerosol Attribution and Air Quality Minimum: Quantify optical and microphysical aerosol properties in the PBL and free troposphere to improve process understand estimates of speciation, aerosol emissions ar predictions of near-surface particulate concentrations.	Objectives	doo	4	A+CCP
Concentiations.	mum: Quantify optical and microphysical ol properties in the PBL and free sphere to improve process understanding, ates of speciation, aerosol emissions and ctions of near-surface particulate			
Enhanced: Characterize changes in vertical profiles of optical and microphysical propert over space and time in terms of 3D transport spatially resolved emission sources and resid production and loss terms.	es of optical and microphysical properties space and time in terms of 3D transport, ally resolved emission sources and residual			

A	ссР	одо	POR	Potential Enabled Apps	Geophysical Va	riables (1 of 2)	Qualifiers
1) 	0	PC	Pote Enal Ap	Minimum	Enhanced	Quaimers
٧				7,8,16,17	Aerosol Extinction Profile		Total + non- spherical
٧				5,7,8,15-17	Aerosol Vertical Extent		
>		S	(v)	5,7,8,15-17	Aerosol Optical Depth	PBL and column	
٧				5,7,8,15-17	Aerosol Absorption Optical	PBL and column	
٧				5,7,8,16,17	Aerosol Fine Mode Optical	PBL and column	
٧			(√)	5,7,8,15-17	Aerosol Angstrom Exponer	PBL and column	
٧			(√)	5,7,8,15-17	Aerosol Real Index of Refra	PBL and column	
٧				5,7,8	Aerosol Non-Spherical AOD) Fraction	PBL and column
٧					Aerosol Extinction to Backs	catter Ratio	PBL and column
٧					Aerosol-Cloud Feature Mas	k	
٧			(√)	5,7,8,17	Planetary Boundary Layer H	leight	
			٧		Environmental Temperatur	e Profile	
			٧		Environmental Humidity Pr	ofile	

		Cambunian		De	sired	Capak	oilities		Instrument	Desired Mission		
Consoli	dated Obse	rvables	Geophysical Variables	Range	Uncerta	ı	Resolut	ion	Altitude	Class	Capabilities	
	(3 of 6)			Rar	inty	Δх	Δz	Swath	Altit	Ciuss	Capabilities	
Minimum	Enhanced	Channels/ Angles	IMPORTAN	NT : Des	ired Cap	abilities	s are pro	eliminary.	Click <u>her</u>	<u>e</u> for additional inform	nation.	
TAtbsCo.λz Molecular+Particula polarized Backscat			AOD.¢, AODF.¢, AAOD.¢,AEXT.z, AABS.z,AEXTF.z,AE.I,AE.z,				30 m					
(Superseded by HS RayAtbs.λz, MieA MieAtbsCo.λz me available)	tbsCo.λz and	VIS NIR	ACFM.z,ANC.¢,AE2BR,AE2BR.¢, AEFR.I,AEFR.z,ARIR.¢,AIIR.¢, ANSPH,ANSPH.z,APM2.5,AVE, BSS,CA,CBH,COD,CTDC,CTDS, CTE,CTH,ICNC,IWP,PANC,PBLH			100 m	10 m	100 m	-2 to 42 km	Backscatter Lidar	Polar Orbit (O1, O4, O7, O9); Note: ∆x & swath meant to imply continuous along-track coverage;	
TAtbsX.\(\lambda\)z Molecular+Particula Cross-polarized Ba (Superseded by HS RayAtbs.\(\lambda\)z, MieA MieAtbsCo.\(\lambda\)z me available)	ackscatter Profiles SRL enhanced tbsCo.λz and	VIS NIR	Same as for TAtbsCo.λz							Backscatter Lidar	Swath means receiver footprint diameter View angle: 0.3 to 5 degrees	
Rad.λ Radiances		VIS NIR				100 m		100 m		Lidar	from lidar background monitor	
Naulalices		UV										

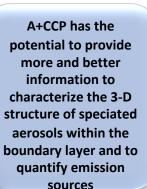
Consolidated Observables (4 of 6)		Coorbusies		De	sired	Capak	oilities		Instrument	Desired Mission		
Consolid		rvables	Geophysical		Uncerta		Resolut	ion	Altitude	Class	Capabilities	
	(4 of 6)			Range	inty	Δх	Δz	Swath	Altit	Class	Capabilities	
Minimum	Enhanced	Channels/ Angles IMPORTANT: Desired Capabilities are preliminary. Click here for additional information.							nation.			
RayAtbs.λz Attenuated Rayleig Profiles	h Backscatter	UV VIS	AOD.¢, AODF.¢, AAOD.¢, AEXT.z, AABS.z, AEXTF.z,AE.¢ AE.z,ACFM.z,ANC.I,AE2BR, AE2BR.¢,AEFR.¢,AEFR.z,ARIR.¢, AIIR.¢,ANSPH,ANSPH.z,APM2.5, AVE,BSS,CA,CBH,COD,CTDC, CTDS,CTE,CTH,ICNC,IWP,PANC, PBLH			100 m	10 -30 m	100 m	-2 to 42 km	HSRL Lidar	Polar Orbit (O1, O4, O7, O9); Note: ∆x & swath meant to imply continuous along-track coverage; Swath means receiver footprint	
MieAtbsCo.λz Attenuated Mie Co- Backscatter	polarized	UV VIS	Same as for RayAtbs.λz			100 m	10 – 30 m	100 m	-2 to 42 km	HSRL Lidar	diameter; View angle: 0.3 to 5 degrees	
MieAtbsX.λz Attenuated Mie Cro Backscatter	ss-polarized	UV VIS	Same as for RayAtbs.λz			100 m	10 - 30 m	100 m	-2 to 42 km	HSRL Lidar		

Consolidated O (5 of 6			Goophysical		Desire	ed Ca	pab	ilities	Instrument	Desired Mission		
			Geophysical Variables	egu	Uncertainty		Resolut	ion	nde	Class	Capabilities	
		6)		Range		Δх	Δz	Swath	Altitude		Capabilities	
Minimum Enhanced Channels/Angles			IMPORTANT: Desired Capabilities are preliminary. Click here for additional information.									
Rad.λ Radiances		UV: 400-470nm VIS: 635-680nm SWIR: 1.6-2-2 pm # Channels: 5	Land and Ocean: AOD. & APM25, COD, CF Ocean only: AODF. & , AE. &		5%	500 m		100 km	ı	Multispectral Radiometer		
Rad.λα Multi-angle R	adiances	UV: 400-470 nm VIS: 550-870 nm # Channels: 4 # Angles: 5	AOD.¢, AODF.¢, AAOD.¢, AE.¢, ASYM, ANSPH, AVE, APM25, CF, CTH			500 m	_	100 km	_	Multi-angle Radiometer		
DOLP.λα*(F Multi-angle D Linear Polariz	egree of	UV: 350-470 nm VIS: 530-870 nm # Channels: 5 # Angles: 5	AOD.¢, AODF.¢, AAOD.¢, AE.¢, ASYM, ANSPH, ANC.¢, ARIR.¢, AIIR.¢, AVE, APM25, COD,CTDC,CTDS, CTH		Max(3% Rad, 0.005 DOLP	500 m	_	100 km	_	Multi-angle Polarimeter		

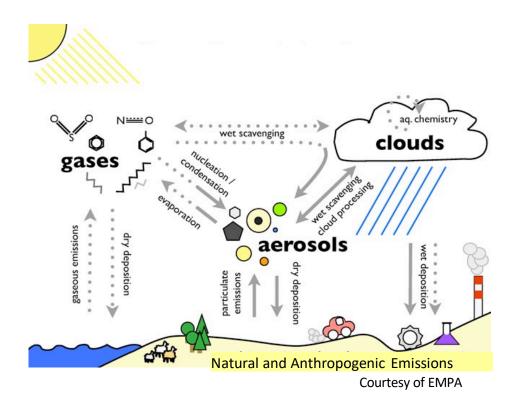
			Geophysical		Desire	ed Ca	pab	ilities	Desired Capabilities						
Cons	olidated 6 of	Observables	Variables	Range	Total	Resolution			Altitude	Instrument Class	Desired Mission Capabilities				
(6.0				Rai	Uncertainty	Δх	Δz	Swath	Altir						
Minimum Enhanced Channels/Angles			IM	IMPORTANT: Desired Capabilities are preliminary. Click here for additional information.											
Rad.λ Radiances		UV: 355 nm	AOD.e, AAOD.e. AODF.e. AE.e., APM25, COD, CF			250 m		300 km	ł	Multispectral Radiometer	Moderate bandwidth (10-30 nm) channel centered close to wavelength or within given range				
Rad.λα Multi-angle F	Radiances	SWIR: ~1680, ~1880, ~2260 nm # Angles: 5.	AOD.¢, AODF.¢, AAOD.¢, AE.¢, ASYM, ANSPH, ANC.¢, ARIR.¢, AIIR.¢, AVE, APM25, COD, CTH		5%	250 m		300 km		Multi-angle Radiometer	Moderate bandwidth (10-30 nm) channel centered close to wavelength or within given range				
(DOLP.λα)*(Rad.λα) Multi-angle Degree of Linear Polarization		SWIR: ~1680 # Angles: 5.	AOD.¢, AODF.¢, AAOD.¢, AE.¢, ASYM, ANSPH, ANC.¢, ARIR.¢, AIIR.¢, AVE, APM25, COD,CTDC,CTDS, CTH		5%	250 m		300 km		Multi-angle Polarimeter	Moderate bandwidth (10-30 nm) channel centered close to wavelength or within given range				
•					•										


Objective 5: Aerosol Attribution/AQ Potential Enabled Application Example

 AQ Forecasting & Decision-Making: Observations of speciated aerosol enable initial conditions, plume tracking (e.g., volcanoes, forest fires), and estimation of emissions for AQ forecasting, as well as, for AQ decision-making, such as State Implementation Plan development and Exceptional Event support.

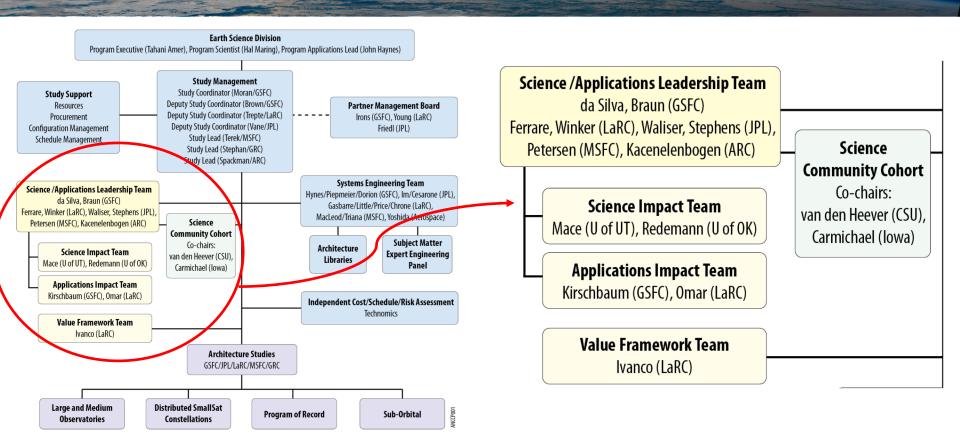

 Relevant Geophysical Properties: AOD, Aerosol Extinction Profiles, Aerosol Speciation, Aerosol layer height

 Partners: NOAA, EPA, state AQ agencies, National Forest Service, FAA, VAACs


Plume Height (m)

Objective 5: Aerosol Redistribution Potential Enabled Application Example

- Operational Air Quality
 Forecasting: Aerosol observations are used for operational AQ forecasting (e.g., forecast initialization), tracking dust plumes, and issuing AQ alerts
- Relevant Geophysical Properties: Aerosol Optical Depth, Aerosol Extinction Profiles, & Aerosol Speciation
- Partners: NOAA, EPA (e.g., AirNOW) and state AQ agencies



Concluding Remarks

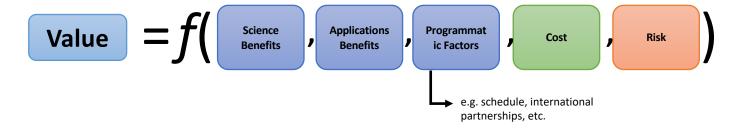
- Aerosol speciation is the linchpin for improving aerosol emissions and for gaining insight into aerosol processes such as vertical transport, wet removal and cloud processing
- Objectives 5 and 6 cannot be fully addressed with remotely-sensed observations alone — earth system models play a critical be it in data assimilation/inverse calculations or systematic upscaling from LES to the climate scales.
- Simultaneous observations of the aerosol and clouds/precipitation states are not easily (if at all) realized from space an integrated space/sub-orbital approach is necessary to fully address many of the A-CCP objectives.
- The Geostationary PoR, in particular the Atmospheric Composition Virtual Constellation, will play a critical role for the process oriented aerosol objectives in A-CCP.

Extra Slides

Science Team Organization

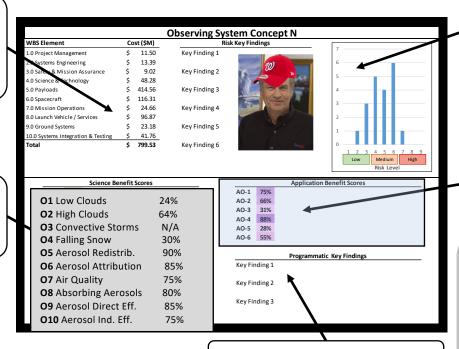
What is a DO Architecture?

- An observing system concept; for example:
 - ✓ Dedicated observatory
 - ✓ A CubeSat/Small-Sat constellation
 - ✓ Hosted on a Commercial Sat
 - √ Flying in constellation with Agency X's Satellite Z
- Desired Instrument Capabilities (NOT requirements)
 - √ This may include evaluation of specific instrument types (i.e. spectrometers, lasers, radiometers, etc)
- Other elements of the system:
 - ✓ Access to space
 - ✓ Ground Systems
 - ✓ Etc.


Value Framework Objective

The function of the Value Framework Team is to facilitate and document conversations among stakeholders by providing an objective, structured, and traceable approach. The Value Framework is the set of processes and methods chosen to achieve this objective.

Defining Value


Benefits, cost, and risk are intentionally not rolled up into a single value score to avoid:

- Losing discriminators
- Combining uncertainty
- Anchoring cognitively on an initial value

Value Output: Baseball Cards for Concept N

Cost Estimate Summar y

Science Benefit Scores

Programmatic Factors

Risk Estimate Summary

Applications
Benefit Scores

The VF Baseball Card allows for simultaneous comparisons across observing system concepts on the basis of cost, risk, science and applications benefits, and programmatic factors.

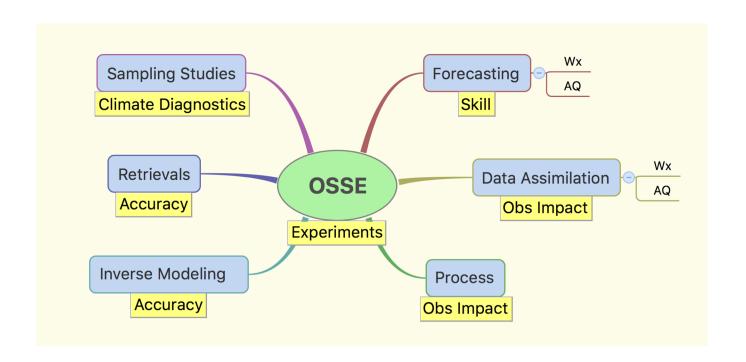
Scoring a Science Objective

 $=\frac{1}{N}\sum_{\substack{\text{GVs,}\\\text{Measurements}}}$

Utility of GV for Objective

(SALT)

X


Quality of Measuremen t for GV

(SIT)

Modeling, OSSEs, and Field Campaign Data Analysis

- Use data from past NASA or other field programs to address the applicability of measurement combinations to constrain geophysical parameters and physical tendencies (processes).
- The SIT will provide information to the Value Framework assessment so that objective decisions regarding mission architecture trades can be made.
- The SIT will also coordinate OSSE activities to assess the ability of specific architectures to address the A-CCP science objectives.

The "E" in OSSE: A Spectrum of OSSEs

	SCC US	Membership		Scio	ence l	Exper	tise		ication ertise
First	Last	Institution	Science Interests	Α	Cl	Cv	Pr	Α	CCP
Greg	Carmichael	lowa	Data Assim., GAW perspective	٧				٧	
Sue	van den Heever	CSU	CCP, aerosols	٧	٧	٧	٧		
Tristan	L'Ecuyer	U Wisc	clouds		٧	٧	٧		
Ana	Barros	Duke	CCP/Hydrology			٧	٧		(√)
Andy	Dessler	Texas A&M							
Graham	Feingold	NOAA	Clouds, aerosols	٧	٧				
Andrew	Gettleman	NCAR	Climate Modeling	٧	٧	٧	٧		
Colette	Heald	MIT	aerosol modeling	٧					
Steve	Klein	LLNL	cloud feedbacks	٧					
Mark	Kulie	Mich.Tech	CCP(snow, microwave)		٧	٧	٧		
Ruby	Leung	PNNL	precip, convection		٧	٧	٧		
Yang	Liu	Emory	Air Quality	٧				٧	
Johnny	Luo	CCNY	UTLS						
Allison	McComiskey	DOE/BNL	aerosols, radiation	٧					
Steve	Nesbitt	Illinois	CCP			٧	٧		
Jeff	Reid	NRL	Aerosols, modeling	٧				(√)	
Lynn	Russell	Scripps	aerosol chemistry	٧					
Courtney	Schumacher	Texas A&M	radar, convection			٧	٧		
Armin	Sorooshian	U Arizona	aerosols, clouds	٧					
Rob	Wood	U Wash	Clouda-erosol interactions	٧	٧				
Faisal	Hossein	U Wash	hydrology				٧		٧
			weather ops, precip,						
James	Nelson	NOAA/NWS/WP	C hydrology		٧		٧		٧