

CNES ACTIVITIES & PROJECTS ON GHG

Carole DENIEL

In charge of atmospheric composition programmes at CNES-HQ in Paris, France

carole.deniel@cnes.fr

28/05/2015 ACC-CEOS, Frascati, Italy

- IASI PROGRAM & RESULTS FOR CH4 & CO2
- MERLIN PROJECT
- MICROCARB STUDY

THE IASI STORY..

CNES developed TIR sounder instruments for Eumetsat

- +IASI 1 (2006-now) & IASI 2 (2012-now)
- IASI 3 to be launched with metop-C (2018)

Weather prediction

Global NWP, LAM, mesoscale models

Atmospheric composition

More than 20 species detected, some well quantified (O_3 , CO, CH₄), some only detected (SO₂, HNO₃, NH₃, formic acid, methanol) in special situations (fires, volcanoes)

Climate

•Essential Climate Variables: T, WV, GHG, Surface characteristics, Clouds, Aerosols.

•Reference for the GSICS.

19/05/2015

THE IASI STORY..

Broad spectral coverage (645-2760 cm⁻¹ without gaps) \rightarrow simultaneous sounding of many trace gases Pixel : 12km diameter

SA/CNRS – ULB

+ Thermal + reflected solar radiation during daytime \rightarrow possible improvements on the retrieval performances for CH₄ and HDO

Ccnes

19/05/2015

THE IASI STORY..

Cyril Crevoisier, Cathy Clerbaux, Vincent Guidard, Thierry Phulpin, Raymond Armante, Brice Barret, Claude Camy-Peyret, Jean-Pierre Chaboureau, Gaelle Dufour, Juliette Hadji-Lazaro, Hervé Herbin, Nicole Jacquinet, Lydie Lavanant, Sébastien Payan, Eric Péquignot, Clémence Piérangelo, Didier Renaut, Claudia Stubenrauch

Greenhouse gases: CO₂ and CH₄ and CO

<u>Objective</u>: to better understand surface sources and sinks of greenhouse gases and the related processes (transport, flux).

IASI contribution: mid-tropospheric columns of CO_2 , CH_4 and CO over both land and sea, day and night.

<u>Methods</u>: non linear inference scheme for CO_2 and CH_4 and spectral double differential approach for CO.

Chédin et al., 2003; Crevoisier et al., GRL, 2004; ACP 2009; ACP 2012; Thonat et al., AMT, 2013

Greenhouse gases: CO₂ and CH₄ and CO

CH₄ flying carpet

Greenhouse gases: CO₂ and CH₄ and CO

Long-term variations of CH₄

Latitude band	Averaged growth ra	increase of CH ₄ (ppbv)	
	IASI	surface stations	(Jul 2007-Dec 2014)
[60N:30N]	4.54 +/- 7.15	4.90 +/- 3.96	~ 33
[30N:Eq]	5.49 +/- 8.46	6.52 +/ 2.90	~ 41
[30S:Eq]	5.31 +/- 5.92	5.53 +/ 4.25	~ 39
[60S:30S]	3.12 +/- 2.42	5.37+/- 2.28 8	~ 23

IASI mid-tropospheric column of CH₄ over Asia

- Strong emission of CH₄ by rice paddies in summer.
- Rapid uplift to the mid-troposphere due to monsoon convection.
- Then Southward transport towards Indonesia.

Although IASI is sensitive to mid-troposphere, it does provide information on surface fluxes.

•Use of LSCE Bayesian 'inversion' system of surface fluxes.

 \rightarrow Good statistical consistency between CH₄ flux estimates from surface network, GOSAT and IASI.

Cressot et al., ACP, 2014

Multi-species study of 2009 Amazonian drought

Severe drought from mid-2009 to the end of 2010 originating from the combination of El Niño conditions during the wet season followed by a warming of the tropical North Atlantic during the dry season .

 \rightarrow Decrease of CH₄ seen by IASI in 2010: due to decrease of wetland emission

 \rightarrow Increase of fires seen by MODIS (especially over the arc of deforestation).

 \rightarrow Increase of **CO** and **CO**₂ due to fire emissions.

IASI multi-species observation allows the characterisation of regional climate events.

•Objectives of the mission:

- •To assure the continuity of IASI for NWP, atmospheric chemistry and climate applications.
- •To improve the characterization of the lower part of the troposphere, the UT/LS region and, more generally, of the full atmospheric column.
- •To improve the precision of the retrievals and to allow the detection of new species.

Solution: Improvement of spectral resolution and radiometric noise.

•IASI-NG Characteristics:

- -spectral coverage: 645 2760 cm⁻¹ (*similar to IASI*).
- -spectral resolution: 0.25 cm⁻¹ after apodisation (0.50 cm⁻¹ for IASI)
- -spectral sampling: 0.125 cm⁻¹ (0.25 cm⁻¹ for IASI).

-reduction of the radiometric noise by at least a factor of ~ 2 as compared to IASI.

-spatial sampling: 12km FOV.

IASI-NG: Mid-tropospheric columns of CO₂ and CH₄

Carbon dioxide

Spectral bands for IASI-NG	Improvement of the CO ₂ precision
15 µm	30 %
4.3 μm	0 %
15 + 4.3 μm	45 %

•IASI-NG will enable the use of 4.3 μ m channels, giving access to a lower part of the atmosphere, with a much improved precision.

Methane

Spectral bands for IASI-NG	Improvement of the precision
7.7 μm	44 %

•Less interference with water vapor lines.

Strong and needed complementarity with SWIR obs. (UVNS/Sentinel5?).
Still relies on synergy (synchronized observation) with MWS!

MERLIN: A lidar for CH4

- CNES-DLR cooperation initiated after COP15 (dec2009)
- More than 9 labs in France & Germany (LSCE, LMD, LATMOS, DLR-I, MPI-Jena, U Bremen, ..)
- Now in Phase B. C/D should start in 2016 for a launch in 2019.

Scientific objectives

- to improve the understanding of the CH4 exchanges at the surface
 - » Identification and monitoring of the global carbon sources and sinks
- And Assess how these exchanges may be impacted by the climate change

MERLIN FACTS

Low Earth orbit satellite for global methane column measurements

➤ Measurement principle:

Integrated Path Differential Absorption (IPDA) LIDAR in the near IR using pulsed laser transmitter and range-gated receiver in nadir-viewing mode ✓ First space-borne system

Franco-German cooperation (CNES & DLR Space Administration):

- MYRIADE Evolutions platform, satellite operation, launch, F part of payload ground segment
- IPDA LIDAR system, G part of payload ground segment
- ➤ Main data product:

Column-weighted dry-air mixing ratios of methane, over satellite sub-track.

➤ <u>Satellite class</u>:

Small satellite (CNES MYRIADE Evolutions platform)

- Launch date: 2019 (3 years mission)
- ➢ Mission status: Phase B

<u>Measurement Method:</u> Integrated-Path Differential Absorption (IPDA) Lidar

MERLIN specifications

	Threshold	Breakthrough	Target
Precision	36 ppb 2 %	18 ppb 1 %	8 ppb 0.5 %
Systematic error	3 ppb	2ppb	1 ppb
Horizontal sampling Accumulation	50 km	50 km	50 km
Objectives	Large wetland fluxes, inter-hemisphere gradients, seasonal and annual budgets on continental scale	Seasonal and annual budgets on country- scale resolves country-scale gradients	Highest Methane flux estimate quality (set by sampling error and model accuracy where any further measurement accuracy would not give better flux estimates) Kyoto protocol like monitoring

Microcarb- Phase A

Scientific objectives

- Measure CO2 column with precision less than 1ppm
- to improve the understanding of the CO2 exchanges at the surface
 - » Quantification of CO2 surface fluxes at regional scales (500 km)²
 - » Identification and monitoring of the global carbon sources and sinks
- And Assess how these exchanges may be impacted by the climate change

Concept and requirements

- Grating spectometer on a micro satellite
- ♦3 bands (O2, CO2), Foot print 25km2, swath 15 km, SNR 200 to

Status

- Conclusion of Phase A with vey positive feedback:
 - Instrument compact (less than 60 kg)
 - Quick development (could be launched in 2020)
 - Compatible with microsatellte (Myriade)
- Still in discussion for a possible phase B. No decision for now.

MICROCARB SPECIFICATIONS

	Masse	< 57kg		
	Consommation	< 61 W		
	Débit TM moyen	< 5 Mbits/s		
	Refroidissement	Passif		
	Résolution spatiale	6 x 5 km²		
	Détecteur 1	Silicium CCD		
	Détecteur 2	HgCdTe NGP Sofradir (développé pour S5)		
	Gaz mesurés	D1 O ₂ :0,76 μ (pour calcul de la pression de surface et le rapport de mélange d'air sec)	D2 $O_{2:}1,26 \mu$ $H_{2}O: 1,32\mu$ $CO_{2}:1,6 \mu$ A Noter présence de raie de CH_{4} à 1,7 μ (bonus, pas d'optimisation de l'instrument) $CO_{2}:2 \mu$	
	Pouvoir de résolution	25 000		
Com	Fonction de mérite	0,36 (objectif Phase A < 0,40 Compatible des exigend sur mesure concentration CO2 <1 ppm		

Thank you for your attention !