The Earth Explorer 8 Candidate Mission

Towards Disentangling Natural and Anthropogenic GHG Fluxes from Space

Heinrich Bovensmann

Institute of Environmental Physics (IUP) / Institute of Remote Sensing (IFE),

University of Bremen (UB), Bremen, Germany

Heinrich.Bovensmann@uni-bremen.de

Contributers: CarbonSat - I

ESA science team: Yasjka Meijer, Paul Ingmann, Dirk Schüttemeyer ESA system team: Armin Löscher, Bernd Sierk, Pedro Jurado & ad-hoc support Univ. Bremen science team: Michael Buchwitz, Konstantin Gerilowski, Stefan Noel, Klaus Bramstedt, Max Reuter, Oliver Schneising, John. Burrows, Heinrich Bovensamnn

Contributers: CarbonSat - II

CarbonSat Mission Advisory Group (MAG):

•	Heinrich Bovensmann,	IUP - University of Bremen, Bremen, DE (Chair)
•	Hartmut Bösch,	University of Leicester, UK
•	Dominik Brunner,	EMPA, Dübendorf, CH
•	Philippe Ciais,	LSCE, Gif-sur-Yvette, FR
•	David Crisp,	JPL, Pasadena, USA (OCO-2 Science Team Leader)
•	Han Dolman,	Free University, Amsterdam , NL
•	Gary Hayman,	CEH, Wallingford, UK
•	Sander Houweling,	SRON, Utrecht, NL
•	Günter Lichtenberg,	DLR-IMF, Oberpfaffenhofen, DE

Fate of Anthropogenic CO₂ Emissions (2004-2013 average)

GLOBAL

CARBON

Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2014; Global Carbon Budget 2014

Regional terrestrial CO₂ fluxes

IPCC 2013, WG1 Carbon and Other Biogeochemical Cycles

Large discrepancies models vs atmospheric inversions esp. in tropics and northern Africa & large uncertainties (~100%) !

Can we do better using satellite XCO₂?

Gaps in Data

Ground-based Networks

• Sparse spatial sampling

SCIAMACHY

- low spatial resolution
- relatively large uncertainties

GOSAT

 Sparse sampling (300 to 1000 cloudfree XCO₂ and XCH₄ soundings each day)

OCO-2

- XCO₂ only
- greater sampling density (> 100,000 cloud free soundings/day), but tracks separated by more than 1.5 degrees of longitude and sample less than 7% of the Earth's surface each month.

Despite the progress to date in measuring atmospheric CO₂ and CH₄ distributions from spacebased sensors, these measurements still do not provide the coverage and resolution needed to map CO₂ and CH₄ fluxes at the sub-continental scale down to the city scale - where the majority of the anthropogenic emissions take place, as recognised by **CEOS (CEOS, 2014).**

CarbonSat Research Objectives

Regional to global scales: To provide a breakthrough in the quantification and attribution of regional-scale surface-to-atmosphere fluxes of CO_2 and CH_4 and climate impact on it (droughts etc.)

Country scale (or equally sized ecosystems): To increase the flux resolving power of greenhouse gas observing satellites to the scale of medium-sized countries.

Local scale (city and below): To pioneer the spaceborne detection, characterization, and quantification of strong local sources of CO_2 and CH_4 .

Disentangling Natural & Anthropogenic Contributions from Space:

- Imaging XCO₂, XCH₄ spatial pattern
 - demonstrated by airborne campaigns
- Seasonal XCO₂, XCH₄ variations
- Combine with patterns of plant photosynthetic activity (~SIF)
- Correlation with other trace gases in synergy with IASI-NG and Sentinel 5 (CO, upper trop. CH₄, NO₂, etc.)
- Diurnal variation -> geostationary orbit or constellation
- Isotopes ...

Note: combining XCO₂ with vegetation fluorescence, NOx and CO allows separation of biomass burning vs. biospheric contributions to the carbon budget (Basu et al. 2014, Parazoo et al. 2014, Reuter et al. 2014) column average CO2, time 2003-07-10_11:00:00

WRF+CASA+VPRM, created at MPI-BGC

Modelled XCO₂ (Pillai et al., ACP, 2010):

- Coupled biosphere-atmosphere model with anthropogenic emissions
- Constant background removed
- Resolution: 10 km x 10 km

CarbonSat: Mission Objectives

CarbonSat aims to support quantification of natural and anthropogenic CO₂ and CH₄ sources and sinks ("fluxes") and their changes via global atmospheric XCO₂ and XCH₄ observations including "imaging" of strong localised CO₂ and CH₄ emission areas. In addition, several secondary products will be delivered such as high-quality Solar Induced Fluorescence (SIF).

From SCIAMACHY to CarbonSat

New capabilities:

- Country and city scale, power plants, oil & gas fields, geological "point" sources, volcaneous...
- Improved validation strategies (TCCON etc.)

CarbonSat Instrument Concept

Greenhouse gas (GHG) imaging at high spatial resolution <u>AND</u> good spatial coverage

- Imaging grating spectrometer, high SNR, 2-D detectors (cooled)
- Push-broom (across track); along track scanning via spacecraft motion
- Good spatial and spectral imaging capabilities
- High performance on-board calibration sources (diffusers, lamp, LED, ...)
- Based on SCIAMACHY, GOSAT, OCO-2 and lessons learned

CarbonSat Requirements: Spatial & temporal

High spatial resolution and good coverage:

- High local spatial resolution: < 2 x 3 km²
- Full 180–240 km swath imaging
- Poleward of 40° latitude 3 overpasses/month
- Monthly global coverage

Orbit: LEO Sun-synchronous, around 11:30 hr LT

Observation modes:

- Nadir (main) \rightarrow for land & ocean
- Sun-glint \rightarrow for optimised ocean coverage

Instrument	CO ₂	CH ₄	Fluores- cence	Spatial resolution [km ²]	Global average clear-sky frequency	Approx. number clear sky observations per day
CarbonSat 240 km	Х	Х	Х	6	32%	3.000.000
OCO-2	Х		Х	3	38%	300.000
GOSAT	Х	Х	Х	87	20%	1.700
GOSAT-2	Х	Х	Х	87	20%	11.000
SCIAMACHY	Х	Х	Х	1800	9%	6.000
S5P/S5		Х	Х	50	22%	1.600.000
MICROCARB	Х			25	26%	26.208

CarbonSat Requirements: Level 2

CarbonSat Mission Requirements at

geophysical product level

Geophysical	Prec	ision*	Relative systematic error **	
parameter	Goal (G)	Threshold (T)	Goal (G)	Threshold (T)
XCO ₂	1 ppm	3 ppm	0.2 ppm	0.5 ppm
XCH ₄	6 ppb	12 ppb	2.5 ppb	5.0 ppb

XCO₂: Column-averaged dry-air mole fraction of CO₂

XCH4: Column-averaged dry-air mole fraction of CH₄

* Required precision for single soundings

** Required systematic error after subtracting potential global offset and/or after bias correction

CarbonSat: Spectral Parameters (Level 1)

CarbonSat Spectral Instrument Characteristics

Parameter	Spectral band			
	NIR	SWIR-1	SWIR-2	
Spectral range [nm]	747 – 773	1590 – 1675	1925 – 2095	
Spectral resolution FWHM [nm]	0.1	0.3	0.55	
Spectral Sampling Ratio (SSR) [1/FWHM]	3	3	3	
Threshold Signal-to-Noise Ratio (SNR) for SZA 50° and vegetation surface [-]	473	347	274	
Radiance for listed SNR in photons/s/nm/cm ² /steradiant	2.0 x 10 ¹³	4.1 x 10 ¹²	9.9 x 10 ¹¹	

CarbonSat Spectral Coverage

CarbonSat: Number of Observations

Assumptions: swath width 200 km, 2x3 km² ground pixel size

CarbonSat Simulation Framework

Estimation of random & systematic errors of CarbonSat XCO₂ & XCH₄ retrievals:

CarbonSat: Single ground pixel XCO₂

Swath: 200 km

Update of Buchwitz et al., AMT, 2013

CarbonSat: XCO₂ and XCH₄ Precision

XCO₂ precision: Typical: 1.2 ppm Better for Deserts: ~0.5 ppm Ocean glint: ~0.5 ppm Worse for Ocean outside glint

Update of Buchwitz et al., AMT, 2013

CarbonSat: XCO₂ and XCH₄ systematic errors

CarbonSat July Aerosol Optical Depth (AOD)

Update of Buchwitz et al., AMT, 2013

Evaluation of CarbonSat's contribution at global scales

Uncertainty reduction of surface-to-atmosphere flux, 500x500km²

courtesy of S. Houweling, SRON

Evaluation of CarbonSat's contribution at national scales

Preliminary, courtesy of G. Broquet, LSCE Land data only

CarbonSat: Emission Hot Spots: Berlin area

CarbonSat: City CO₂ Emissions: Berlin

Very strict cloud filtering

Michael.Buchwitz@iup.physik.uni-bremen.de, 16-Jul-2014 (L2e/LF-II, MOD1:08)

Update of Buchwitz et al., AMTD, 2013 (ground-pixel size 2x3 km², ...)

CarbonSat: City CO₂ Emissions: Paris

Figure 24: Left: Map of the estimated fossil fuel CO2 emissions in the IIe de France region surrounding Paris. Right: Uncertainty in the 6-11AM fossil fuel emissions for the Paris area as a function of wind speed. The blue line shows the estimated current uncertainty. The red dots are uncertainty when CarbonSat data is applied and account for CarbonSat sampling (clouds) and atmospheric transport conditions.

Courtesy of F.-M. Bréon, LSCE

Methane Leackage from Gas Production

Simulation of XCH₄: Emission rate of = $482 \text{ ktCH}_4/\text{yr}$ on an area of ca. 35 km x 35 km (*), 5 m/s wind speed, instrument resolution and single measurement precision as below:

(*) Similar as gas fields in Uintah county, Utah, USA (Karion et al., GRL, 2013)

(#) converted to

Bovensmann et al., ESA Living⁴²lanet⁴² km x ⁴² km Symposium, Edinburgh, 2013 *based on Krings et al.*

COMEX Campaign (USA) Results: Oil Field CH₄

Airborne remote sensing data (MAMAP) from California, August/Sept. 2014, NASA/ESA funded Campaign COMEX

California Oil Field CH₄

MAMAP interpolated:

What CarbonSat will see at 2x2 km² resolution:

Summary

• Evolution of Greenhouse Gas (GHG) missions

- \succ GOSAT → point sampling
- > OCO-2 → line sampling

≻ CarbonSat → imaging & global mapping

- XCO₂ and XCH₄ observations with high accuracy & precision, high spatial resolution (2x3 km² = 6 km²) <u>AND</u> good coverage (~200 km continuous swath); solar induced chlorophyll fluorescence (SIF) as spin-off product
- Quantification of natural and anthropogenic CO₂ and CH₄ sources and sinks ("fluxes") on various temporal and spatial scales
- First satellite mission optimized for detection and quantification of CO₂ and CH₄ emission hot spots via greenhouse gas imaging
- System, scientific support studies and campaign data analysis on-going
- Report for Mission Selection available in summer 2015
- User Consultation in September 2015

CarbonSat: http://www.iup.uni-bremen.de/carbonsat/

Earth Explorer-8 User Consultation Meeting

http://congrexprojects.com/2015-events/15m24/introduction

Introduction
Meeting agenda
Reports
Registration
Venue
Accommodation
Contact

Earth Explorer-8 User Consultation Meeting

15-16 September 2015

Academy of Fine Arts, Krakow, Poland

As a critical input to the decision-making process that will lead to the selection of ESA's eighth Earth Explorer mission, the Earth observation scientific community is invited to a User Consultation Meeting at the Academy of Fine Arts in Krakow, Poland on 15–16 September 2015.

Topic: EE8: CarbonSat or FLEX ? 15-16 Sept 2015, Krakow, Poland Registration deadline: 15 Aug 2015

Thank you very much for your attention

& wide swath

www.iup.uni-bremen.de/carbonsat