CO and NH₃ (and a bit of SO₂) from IASI

Cathy Clerbaux, P. Coheur, D. Hurtmans, L. Clarisse, M. Van Damme, M. George, A. Boynard, S. Bauduin *LATMOS (Université Pierre et Marie Curie) ULB (Université Libre de Bruxelles)*

CO « profiles » in NRT with a 12 km footprint day/night global coverage

+ NH₃ total columns Research mode

+ SO₂ volcano/anthropo

What can be seen by IASI for high pollution events? Boundary layer pollution

Usual picture

Thermal infrared nadir sounders are usually considered as being sensitive to The mid troposphere

Depends on temperature contrast

Credit: P. – F Coheur (ULB)

What can be seen by IASI for high pollution events?

Clerbaux et al, ACP I2009

What can be seen by IASI for high pollution events? **Boundary layer pollution**

How deep the instrument will see depends on temperature contrasts

Wavenumber (cm⁻¹)

Credit P-F. Coheur

 $T_1 > T_{skin}^{eff}$

 $T_1 = T_{skin}^{eff} \rightarrow No signal.$ Emission and

absorption cancel out

 $T_1 < T_{skin}^{eff} \rightarrow Absorption$ from the first

Carbon monoxide

IASI: global, day and night, 12/50 km horiz res. Sensitivity mid tropo (5-10 km) . DOFS 1 to 2 *Thermal contrast key*

Produced when incomplete combustion occurs (industry, heating systems, traffic, biomass burning)

Pollution plumes tracker Emissivity sources

Carbon monoxide : global 2009

2009

JAN FEV MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

China : January 2013

China : January 2013

IASI CO retrieval

CO and SO₂: January 2013

high thermal contrast => high IASI sensitivity at the surface combined with high CO concentrations ⇒IASI detects CO in the PBL

SO₂ global scale (2008-2014)

Credit S. Bauduin

SO₂ global scale (2008-2014)

SO₂ Beijing (2008-2014)

Ammonia

Users A lot of scientific requests Regional models for emission inventories Copernicus Atmospheric Service (potentially) CCI as a precursor of aerosols (TBD)

What can be seen by IASI for high pollution events? Boundary layer pollution

Credit P. – F Coheur

PM, April 2015

Perspectives

Consistent set of +15 years of CO observation (AQ4ECV)

IASI NG ~2021

Spectral resolution x2 (0.25 cm⁻¹) Reduction of noise by a factor of 2 **better assessment of the lower troposphere** + detection limit

