

Copernicus Sentinel-4/UVN pre-launch plans

Berit Ahlers and S4/UVN team

Atmospheric Composition Constellation meeting (ACC-11) ESA/ESRIN 2015

- 1. Sentinel-4/ UVN apportionment
 - instrument design calibration LOL1b processing
- 2. LO performance verification and calibration
 - example radiometric calibration
- 3. contamination prevention (optical degradation)

S4/UVN specifications apportionment

maintain **overview** and sensible Instrument design apportionment at system level **Opto-mechanical** space segment compliance with Thermal instrument level 1b **Electrical** requirements at I/F BOL and EOL Data processing \bigotimes LO to L1b Calibration L0/L1b(overall including in flight) **ATBD** L1b optimisation **On-ground** considering instrument performance at L1b, accuracy budgets and programmatic aspects

S4/UVN on-ground and in-flight requirements

esa

S4/UVN instrument

ZUVN

S4/UVN calibration sources

Objective: to verify is S4/UVN instrument is built as designed @Level 0 under flight representative environmental conditions **'Test as you fly'** incl.:

- verification instrument sufficiently insensitive to incident polarisation
- 2. no **spectral features** in instrument response interfering with atmospheric gas absorptions
- 3. straylight

S4/UVN spectral features

DOAS analysis of satellite spectra

Note how small the

NO₂ features are, about 0.5% signal strength of the total signal

Contributors to these spectral features are: polarisation scrambler, coatings, gratings, sun diffuser, straylight, gain change, ...

Objective: to retrieve calibration key parameters.

1. radiometric calibration Earth spectral radiance, solar spectral irradiance and derived Earth reflectance (radiance/irradiance)

2. spectral calibration

- a. wavelength scale for uniform and non-uniform ground scenes
- b. Instrument Spectral Response Function (ISRF)
- c. optical bench temperature (gradient) dependencies
- 3. spectral/ spatial straylight
- 4. electronic and detector calibration parameters
- **5. geometric** parameters, co-registration, Image Navigation and Registration (INR), geolocation

Flow down to component level

1. component

e.g. characterisation of diffuser, scan mirror (transmission, angle dependence, radiation, ...)

2. sub-system

e.g. Focal Plane Assembly sub-system (detector, FEE/FSE, FPA housing)

3. system

S4/UVN instrument models

AND calibration **facility**, optical, mechanical, electrical ground support equipment (**GSE's**)

RAL Space/UK new building status 17 Feb 2015

RAL Space UK

door port machining (9thApril)

Sentinel 4/UVN instrument in STC-5m using AIRBUS CAD models

© 2015 RAL Space/ Airbus

S4/UVN absolute radiometric accuracy

3% (threshold), **2%** (goal), accounting for all error contributions (straylight, polarisation, smear,...) at level 1b (after corrections) Calls for building-up an error budget accounting for contributions from:

• instrument design

ernicus

- instrument on-ground and in-flight calibration
- signal processing L0 to L1b

Similar requirements exist for **on-ground** measurements*

- instrument response in Sun calibration mode shall be calibrated better than 0.8%
- instrument response in Earth observation mode shall be calibrated better than 1.0%
- instrument response in Earth reflectance shall be calibrated better than 1.0%

Radiometric calibration parameters

- 1. absolute Earth spectral radiance
- 2. absolute Sun spectral irradiance
- 3. Earth viewing angle dependency

(North-South on detectors and scan mirror)

- 4. Sun viewing angle dependency
- 5. absolute **Earth reflectance**: Earth radiance/ solar irradiance, using dedicated sources optimised for this parameter

In orbit, relative radiometric **degradation** monitored and quantified primarily with **Sun irradiance** measurements, but also with **WLS** and **LED**, **Earth radiance** and **moon** measurements.

Absolute radiometric radiance calibration esa

using calibrated sources (FEL lamp, integrating sphere) and radiance angle dependency calibration measurements under flight-representative thermal-vacuum conditions

Absolute radiometric radiance calibration CSA - on ground

using calibrated source cross calibration with respect to FEL lamp

Radiometric measurements

Using different radiometric sources is absolutely essential to obtain required radiometric accuracy and to quantify measurement uncertainties. Measurement sequence include: • absolute radiance/ irradiance/ reflectance				OGSE	Radiance	Irradiance
			1	FEL	1R	11
			2	SBS	2R	21
irradiance goniometryradiance angular dependency			3	Integr. Sphere	3R	31
Product	Msm	Comment				
Refl	21/2R	Best (calibration keydata)				
Refl_FEL	1I/1R	Analysis result from measurement expected to be less good				
Abs_Rad	1R	Calibration keydata (expected to be the most accurate key parameter to be used for L0 to L1b processing)				
Abs_Irrad	Abs_Rad x Refl	Best (expected to be the most accurate key parameter to be used for L0 to L1b processing)				
Abs_Irrad_FEL	11	Analysis result from measurement expected to be less good				
Ang_dept _sphere	3R	Radiance angular dependence				
Refl_sphere	31/3R	Instrument BSDF				
Abs_Rad 2	3R	Radiance angular dependency & calibration keydata				

Refl_sphere	31/3R	Instrument BSDF
Abs_Rad ²	3R	Radiance angular dependency & calibration keydata (to be used in L0 to 1 processing in case more accurate than Abs_Rad)
Abs_Irrad'	Abs_Rad' x Refl	Calibration keydata (to be used in L0 to 1 processing in case more accurate than Abs Irrad)

Solar occultation/ zenith sky

(dark lines in bright scene instead of bright lines from OGSE with dark background)

real atmospheric radiance source as stimulus

end-to-end performance

Close loop between atmospheric measurements, processing calibration and instrument hardware up to level 2

Decontamination measures to prevent optical degradation (examples)

- **bake-out** after launch (additional heater power)
- protection optical components from e.g. solar flux
- warm-up possibilities independently for detectors/optical bench
- protection solar diffusers
 - no measurements several weeks after launch
 - no measurements after yaw flip
 - no measurements after thrusters' usage
- purging
- avoidance humidity
- avoid materials degrading under space environment (e.g. relevant light fluxes, atomic oxygen, radiation, TV, molecular contamination)

S4/UVN instrument design, LO performance verification and calibration (on ground 'Test as you fly' and in flight).

Attention for **balance** between L0 **performance**, **calibration** and level 0 to 1b **data processing** to deliver L1b data products within the required specification at End of Life.

S4/UVN instrument well equipped with **on-board calibration hardware**.

Phase C/D ongoing.

Thank you for your attention!

For further information:

ESA Copernicus website http://www.esa.int/copernicus

EC Copernicus website http://www.copernicus.eu/