DISCOVER-AQ

Challenges and opportunities for remote sensing of air quality: Insights from DISCOVER-AQ

Jim Crawford¹, Ken Pickering², Lok Lamsal², Bruce Anderson¹, Andreas Beyersdorf¹, Gao Chen¹, Richard Clark³, Ron Cohen⁴, Glenn Diskin¹, Rich Ferrare¹, Alan Fried⁵, Brent Holben², Jay Herman⁶, Ray Hoff⁶, Chris Hostetler¹, Scott Janz², Mary Kleb¹, Jim Szykman⁷, Anne Thompson², Andy Weinheimer⁸, Armin Wisthaler⁹, Melissa Yang¹

 ¹NASA Langley Research Center, ²NASA Goddard Space Flight Center,
³Millersville University, ⁴University of California-Berkeley, ⁵University of Colorado-Boulder, ⁶University of Maryland-Baltimore County,
⁷Environmental Protection Agency, ⁸National Center for Atmospheric Research, ⁹University of Innsbruck

http://discover-aq.larc.nasa.gov/

Thanks to Partners

Maryland Department of the Environment (MDE) San Joaquin Valley Air Pollution Control District (SJV APCD) California Air Resource Board (CARB) Bay Area Air Quality Management District (BAAQMD) Texas Commission on Environmental Quality (TCEQ) Colorado Department of Public Health and Environment (CDPHE)

Environmental Protection Agency, Office of Res. and Dev. National Center for Atmospheric Research National Science Foundation National Oceanic and Atmospheric Administration National Park Service

University of Maryland, College Park; Howard University University of California, Davis; University of California, Irvine University of Houston; Rice University; University of Texas; Baylor University; Princeton University of Colorado-Boulder; Colorado State University

Investigation Overview

<u>Deriving Information on Surface Conditions from Column</u> and <u>VER</u>tically Resolved Observations Relevant to <u>Air Quality</u>

> A NASA Earth Venture campaign intended to improve the interpretation of satellite observations to diagnose near-surface conditions relating to air quality

Objectives:

1. Relate column observations to surface conditions for aerosols and key trace gases O_3 , NO_2 , and CH_2O

2. Characterize differences in diurnal variation of surface and column observations for key trace gases and aerosols

3. Examine horizontal scales of variability affecting satellites and model calculations

Deployment Strategy

Systematic and concurrent observation of column-integrated, surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality as they evolve throughout the day.

Three major observational components:

DISCOVER-AO

<u>NASA UC-12 (Remote sensing)</u> Continuous mapping of aerosols with HSRL and trace gas columns with ACAM

<u>NASA P-3B (in situ meas.)</u> In situ profiling of aerosols and trace gases over surface measurement sites

<u>Ground sites</u> In situ trace gases and aerosols Remote sensing of trace gas and aerosol columns Ozonesondes Aerosol lidar observations

Deployment Locations

DISCOVER-AO

DISCOVER-AQ Predicted NO₂ Column Behavior

Taken from Fishman et al., BAMS, 2008

Taken from Boersma et al., JGR, 2008

Pandora Statistics-Maryland

DISCOVER-AO

P-3B Average Profiles-Maryland

Pandora Statistics-Houston

-

Pandora Statistics-California

×

Pandora vs Surface-Colorado

×

Remote Sensing Column Air Mass Factor Sensitivity: Observations and Methods

- ► Location: Padonia, Maryland
- Observation period: 3-4 spirals for 14 days in July 2011 (Hours covered 6 AM 5 PM, local time)
- ► NO₂ observations:
 - Aircraft (P3B) measurements (200 m ~4 km) NCAR data (accuracy better than10%)
 - Surface measurements by photolytic converter instrument (accuracy better than 10%)
 - Spatial resolution comparable between model (4x4km) and spiral (radius ~4km)
- Observed PBL heights : Estimation based on temperature, water vapor, O₃ mixing ratios, and RH (Donald Lenschow)
- ► Methods:
 - Model and surface measurements sampled for the days and time of aircraft measurements
 - Spiral data sampled at model vertical grids

Comparison of NO₂ profiles and shape factors

Errors in AMFs/retrievals from a-priori NO₂ profiles

NO₂ profiles and AMFs (11 AM)

1. DISCOVER-AQ has collected a dataset of unprecedented detail on the diurnal trends in air quality as it is discerned from in situ and remote sensing methods.

2. NO₂ columns exhibit both unexpected and diverse diurnal trends that are consistent with vertically resolved profiles.

3. NO₂ tropospheric column retrievals are highly sensitive to diurnal variation in a-priori profile shapes.

Backups

CMAQ model: Three simulations			
Horizontal resolution	4 km x 4 km		
Vertical levels	45 (surface-100 hPa)		
Domain	Washington-Baltimore		
Chemical mechanism	CB05		
Aerosols	AE5		
Dry deposition	M3DRY		
Vertical diffusion	ACM2		
Chemical and initial boundary condition	RAQMS; 12 km x 12 km		
Biogenic emissions	Calculated within CMAQ with BEIS		
Biomass burning emissions	FINNv1		
Lightning emissions	Calculated within CMAQ		
Anthropogenic emissions	NEI-2005 projected to 2012		
	1. ACM2 Base	2. ACM2 Mod	3. YSU Mod
PBL scheme	ACM2	ACM2	YSU
Mobile emissions	Standard	Reduced 50%	Reduced 50%
Alkyl nitrate photolysis	Standard	10 times faster	10 times faster

- ► Two PBL schemes selected based on the study by Clare Flynn
- Emissions and photolysis rate changed based on Anderson et al., 2014 and Canty et al., 2014