

CEOS Atmospheric Chemistry Constellation Meeting (ACC-11) ESA/ESRIN, Frascati, Italy, 28-30 April 2015

M. Van Roozendael & A. Merlaud, BIRA-IASB

The AROMAT team

European Space Agency (ESA)

- 1. Belgian Institute for Space Aeronomy (BIRA-IASB
- **2. Royal Netherlands Meteorological Institute (KNMI)**
- 3. The Dunarea de Jos University of Galati (UGAL)
- 4. The National R&D Institute for Optoelectronics (INOE)
- 5. The Institute of Environmental Physics Bremen (IUP)
- 6. The National Institute of Aerospace Research "ELIE CARAFOLI" (INCAS)
- 7. The Max Planck Institute for Chemistry (MPIC)
- 8. The Free University of Berlin (FUB)
- 9. Reev River Aerospace (RRA)

esa

20	
20	THE OWNER
21	LIDC
	2000

AROMAT: Airborne Romanian Measurements of Aerosols and Trace gases

<u>Campaign motivation</u>: test newly developed airborne instruments for air quality research in preparation of future Sentinel-5P (4/5) Cal/Val campaigns. Involve Romania in such activities.

<u>First week of September 2014</u> in Bucharest (largest city in Romania, 2.2 million inhabitants, heavy traffic)

<u>Second week in Turceni</u>: small village on the countryside, with a large power plant known to be a major source of NOx, SO₂ and aerosols

ACC-11, ESA-ESRIN, Frascati, 28-30 April 2015

Both spots visible on OMI data

Instruments and platforms

<u>Airborne</u>

- Uni. Berlin Cessna:

Microtops

(Uni. Berlin)

- INCAS UAV

(INOE)

 \rightarrow Sunphotometer and

→AirMap (IUP-Bremen

 \rightarrow NO₂ sonde (KNMI)

 \rightarrow Aerosol particle sizer

- Balloon launches:

 \rightarrow Dust trak (INCAS)

- Uni. Galati UAV

 \rightarrow SWING (BIRA)

Mobile (car/balloon)

- Mini-MaxDOAS (MPIC)
- Zenith-only mobile DOAS (Uni. Galati, BIRA)
- Double channel mobile DOAS (BIRA)
- NO₂ sonde (KNMI)

Static/Movable

- RADO observatory (Bucharest): lidars, in situ monitors, Aerosol Chemical Speciation Monitor, meteo. Station, PM 2.5, Aethalometer, CIMEL sun photometer (INOE)
- In situ monitor (Uni. 🔴 Galati)
- In situ monitor, scanning lidar, ACSM (INOE)

NO₂ SO₂ aerosols

ACC-11, ESA-ESRIN, Frascati, 28-30 April 2015

AirMAP IUP/FU-Berlin

AirMAP on FU Berlin Cessna

 Pushbroom imaging DOAS instrument for NO₂ (and HCHO, SO₂)

AirMAP viewing geometry

- θ opening angle/FOV across track ~ 48°
- θ_i individual viewing angle of direction i (max. 35)
- γ opening angle/FOV along track ~ 1.5°
- *s* side length of pixel across track
- w side length of pixel along track

single spatial pixel

observed area (FOV) instantaneously observed area (iFOV)

Flight direction

000

H

swath width s

7

w = v. texp

2014/09/08 Bucharest VC NO₂

- Large values
- Low wind speed (≈ 0 1 m/s), alternating directions

8:39 – 11:07 UTC | SZA: 43°- 40.6°

Optical head of BIRA mobile DOAS system

Sept 1, 2014 Bucharest

9.93 – 12.25 UT

Comparison: Car-DOAS / AirMAP

Bucharest: Measurements from RADO Observatory (INOE) lidar and aerosol chemical speciation monitor

Ref for RADO: Nicolae et al. 2010, RRP, 2010

UAV aerosol measurement in Clinceni

2nd of Sept 2014

Mass concentrations at different altitudes measured by APSR operated on the INCAS UAV

10 SEPTEMBER 2014 TURCENI-CRAIOVA

2014/09/11 Turceni VC NO₂

Universität Bremen*

- Power plant
- Pronounced NO₂
 plume
- Values comparable to Bucharest

7:23 – 10:45 UTC | SZA: 54.5° - 40.6°

Turceni: NO2 sonde measurements

11 balloon launches in Turceni

NO2-sonde 2014-09-11-11

Ref KNMI sonde: Sluis et al., AMT, 2010

- Avantes AVASpec-2048 spectrometer
- 300-550 nm, 1.0 nm FWHM
- IFOV = 2.6° , Angular FOV = 120°
- 920 g
- 27 x 12 x 12 cm³
- Power consumption: 6 W at 5 V

Preliminary results of SWING flights

A-RO AT

Complementary measurements in Turceni: in situ and lidar measurements

Plans for AROMAT-2 campaign

- Follow-up campaign in late summer 2015 (15/08 15/09)
- Build on science and operational lessons learned from AROMAT-1
- Extended focus, more resources committed
- Improved coordination of aircraft and ground-based mobile and static measurements
- Improved AirMap setup (\rightarrow NO₂, SO₂ & HCHO mapping)
- Additional APEX flights (NO₂, CH₄, surface reflectance)
- Ground-based SO₂ camera + NO₂ imaging system (Altius)
- Additional ULM flights equipped with DOAS and NO₂ sonde
- NO_2 and O_3 sondes launched from Bucarest
- Extended suite of ground-based systems (Pandora-2S, FTIR, in-situ, Lidar, Aeronet, etc)

