

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Impact of Spaceborne Observations on Tropospheric Composition Analysis and Forecast (ISOTROP)

An OSSE to study the impact of Sentinel 4 and 5 data on air quality forecasts

Henk Eskes, KNMI, The Netherlands, ISOTROP partners, ESA

Presented at CEOS-ACC, Frascati, 30 April 2015

The ISOTROP Team

KNMI

- Henk Eskes (coordination)
- Jason Williams
- Pepijn Veefkind
- Johan de Haan
- Albert Oude Nijhuis

TNO

- Lyana Curier
- Arjo Segers
- Renske Timmermans

NILU

- William Lahoz

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

CNRM-GAME

- Jean-Luc Attie
- Rachid Abida
- Laaziz El Amraoui
- Philippe Ricaud

FMI

- Jukka Kujanpää
- Johanna Tamminen

ESA

- Dirk Schuettemeyer
- Ben Veihelmann

Project objectives

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Objectives of ESA study

- 1: To assess the value of LEO+GEO satellite observation system measuring in the UV-VIS for tropospheric composition monitoring using data assimilation. Focus on O₃, CO, NO₂, HCHO
 - Gain in model + forecast skill.
 - Improvement of boundary layer (BL) concentrations.
 - Improvement of impact long-range transport on BL.
 - Improvement of continuous and episodal sources.
 - Optimisation of surface emission rates.
- 2: To study the impact of cloudiness, aerosol, surface albedo and uncertainty in the dynamical fields (vertical transport) on model and forecast skill. Optimise the assimilation approach.

Approach and partner roles

KNMI, FMI: synthetic observations TNO, KNMI: OSSE with LOTOS-EUROS for NO2, HCHO (BL and emissions) CNRM-GAME, NILU: OSSE with MOCAGE for CO and O3 (transport)

OSSE = Observing System Simulation Experiment

Project limitations

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Focus on four species: O₃, CO, NO₂, HCHO

- Project is "univariate" in nature: species will be studied individually
- Synergy with other available (satellite) data not studied In particular the combined use of UV-Vis-NIR-SWIR and TIR is a powerful approach to obtain better vertical information on CO and O₃

High Spatial Resolution

Cross-OSSE

Time periods

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Summer 2003: June-July-August Winter 2003/4: November-December-January

Fire events (2003 Portugal)

Study domains

Nature run comparisons

Synthetic observations

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Based on optimal Estimation (Rodgers) and DOAS Observation error covariance matrices, kernels Orbit simulator

Observations - CO

CO OSSE analysis increments

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Clear impact in both PBL and free trop

CO OSSE analysis increments

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Correlation (CR-NR)

Correlation (AR-NR)

CO OSSE Time series surface

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Paris

Fires in Portugal

East Europe

Observations - NO2, S5

Observations - NO2, S4

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2. NO2RetrievalVerticalColumnTropospheric [molecules cm^-2] 1e16

Local noon

Early morning

NO2 OSSE

CR

S5

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

S4

-5.0 -2.5 0.0 2.5 5.0 bias(OR-NR) no2 sc [(1e15 mlc TRC)/cm2]

2.5 3.8 5 6.2 7.5 8.8 1.2 rms(OR-NR) no2 sc [(1e15 mic TRC)/cm2]

0.7 0.3 0.4 0.5 0.6 0.8 0.9 corr(OR,NR) no2 sc [1]

AR

-5.0 -2.5 0.0 2.5 5.0 bias(OR-NR) no2 sc [(1e15 mlc TRC)/cm2]

2.5 3.8 5 6.2 7.5 ms(OR-NR) no2 sc [(1e15 mic TRC)/cm2]

2.5 3.8 5 6.2 7.5 ms(OR-NR) no2 sc [(1e15 mic TRC)/cm2] 1.2 8.8

AR

-5.0 -2.5 0.0 2.5 5.0 bias(OR-NR) no2 sc [(1e15 mlc TRC)/cm2]

ORENL-ija [2003-06-01.2003-08-30] 14

0.7 0.8 0.3 0.4 0.5 0.6 0.9 corr(OR,NR) no2 sc [1]

Corr

NO2 OSSE: Diurnal cycle

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Note: LOTOS-EUROS assimilation is adjusting emissions: longer memory than e.g. 3D-Var

bias(OR-NR) no2 sfc [ppb]

bias(OR-NR) no2 sfc [ppb]

Observations - HCHO

HCHO OSSE

ORFFG-fir [2003-08-01,2003-08-16] 14:00

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

ORFFG-fir [2003-08-01,2003-08-16] 14:00

mean form sc [(1e15 mlc TRC)/cm2]

ORFFL-fir [2003-08-01,2003-08-16] 14:00

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 mean form sc [(1e15 mlc TRC)/cm2]

ORFFL-fir [2003-08-01,2003-08-16] 14:00

mean form sc [(1e15 mlc TRC)/cm2]

22

Fires in

Portugal

1-16

Observations - Ozone

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Follow approach of Migliorini, MWR 2008 "Use of Information Content for ... efficient interface to DA"

- 1. Efficient storage: Only kernel vectors and retrieval value for leading eigenvectors
- 2. Convenient for data assimilation: smaller nr of observations + diagonal obs. covariance

KNMI DISAMAR RTM:

- * forward + Optimal Estimation retrieval following Rodgers
- * 300-320 nm range @ 7x7 footprint
- * 6 leading eigenvectors

Summary ISOTROP project

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

An OSSE to study the impact of Sentinel 4 and 5 data on air quality forecasts Target species O3, CO, NO2, HCHO

- Realistic observations with full description of kernels and covariances
- Model differences describe present-day model uncertainty

S4-S5 synthetic observations and lookup-tables available for future OSSE studies

"Atmospheric Composition Observation System Simulation Experiments (OSSE) Workshop", ECMWF, October 2012 => Possible collaboration with USA / Asia on OSSE studies for GEO and LEO platforms (CEOS / NASA / MACC)

