An Atmospheric CO₂ Gap Analysis for CEOS

ACC-5 Meeting at CSA, March 30, 2010

Brian Killough CEOS Systems Engineering Office (SEO)

Starting Point... the CEOS Databases

www.ceos.org

Search for CEOS missions that measure CO₂ ... you will find only 4 on the "official" agency MIM list. We know there are many more ...

Further web searches found valid CO₂ data products produced by 19 CEOS missions.

General Mission Timeline Results

Mission	Instrument	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
ENVISAT	SCIAMACHY	-																	
SCISAT-1	ACE-FTS																		
Aura	TES										\mathbf{b}		DC	0	22				
Aqua	AIRS								- NO GAPS ???										
Metop-A	IASI																		
GOSAT	TANSO-FTS																		
Metop-B	IASI						1												
NPOESS-1	CrIS																		
FY-3C	IRAS			1							а. — а								
FY-3D	IRAS																		
OCO-2	OCO Spec				1		-	1			°—°			· _ ·					
FY-3E	IRAS	1						î î						1					
FY-3F	IRAS	1			90 1						°°			22					
Metop-C	IASI				9														
PREMIER	IMIPAS	1									11								
FY-3G	IRAS	1			9									1			1		
NPOESS-3	CrIS	1			2			°°						1					
ASCENDS	LAS													í—i					
NPOESS-4	CrIS													1					

- Timelines from the expanded mission list (above) **DO NOT** accurately reflect gaps.
- Gap analyses must consider instrument types (measurement approach), atmospheric layers, and detailed requirements (accuracy, spatial resolution, temporal resolution).
- Automation of the detailed gap analysis process using existing CEOS databases is not currently possible ... maybe in the future.

Next... Search the Systems Database for Requirements

www.ceos.org

Last (Description includion

Farm Channers Barrier

VIEW DEFAULT

1000.08-07

1040-03-13

1007-02-00

1497-05-25

411-10-10

0108-02

Search for CO₂ measurement requirements from GCOS, EUMETSAT, and WMO.

Param Type	Application	Source	Accurac	y (RMS)	Δx (km)	Δz ((km)	Δt ((h)	ō	h)
Param Type	Application	Source	thresh	break	thresh	break	thresh	break	thresh	break	thresh	break
Lower Troposphere	Climate	6008	2.00000	1.50000	500.00000	70.00000	2.00000	1.00000	12.00000	6.00000	1440.00000	480.00000
Lower Troposphere	Composition and climate	EUM	5.00000	3.00000	250.00000	50.00000	5.00000	2.00000	24.00000	12.00000	6.00000	0.50000
Lower Troposphere	Atmospheric chemistry	WMO	5.00000	3.00000	500.00000	150.00000	4.00000	2.00000	24.00000	12.00000	168.00000	96.00000
Higher Troposphere	Climate	6008	2.00000	1.50000	250.00000	100.00000	2.00000	1.50000	6.00000	4.00000	1440.00000	480.00000
Higher Troposphere	Composition and climate	E								0000	6.00000	0.50000
			Re	2 N	ui	rei	\mathbf{m}	ρr	ntc			
Lower Stratosphere	Climate	GC		- 4	мп				103	000	4380.00000	1680.0000
Lower Stratosphere	Composition and climate	EUM	5.00000	3.00000	250.00000	100.00000	3.00000	2.00000	168.00000	24.00000	6.00000	0.50000
Upper Stratosphere & Mesosphere	Climate	ocos	2.00000	1.50000	500.00000	350.00000	4.00000	3.00000	6.00000	4.00000	4380.00000	1680.0000
Upper Stratosphere & Mesosphere	Composition and climate	EUM	10.00000	7.00000	500.00000	200.00000	5.00000	2.00000	168.00000	24.00000	6.00000	0.50000
At Cloud Top	Climate	6008	2.00000	1.50000	500.00000	100.00000	NA	NA	6.00000	4.00000	4380.00000	1680.0000
At Cloud Top	Composition and climate	EUM	1.00000	0.70000	50.00000	25.00000	NA	NA	12.00000	6.00000	6.00000	0.50000

What are the Detailed Requirements?

Profile or Column	Profile or Column				Accu	iracy (p	pmv)		∆x (km)			∆z (km)		∆t (h)		
Atmosphere Layer	Application	Source	thresh	break	obj	thresh	break	obj	thresh	break	obj	thresh	break	obj		
CO ₂ Profile	Chemistry	WMO	19	12	8	500	150	50	4	2	1	24	12	6		
Lower Troposphere Weighted Columns	Climate	GCOS	8	6	4	500	70	10	2	1	0.5	12	6	3		
	Composition & Climate	EUMETSAT	19	12	8	250	50	10	5	2	0.5	24	12	6		
CO ₂ Profile	Climate	GCOS	8	6	4	250	100	50	2	1.5	1	6	4	3		
Higher Troposphere Weighted Columns	Composition & Climate	EUMETSAT	19	12	8	250	50	10	5	2	0.5	24	12	6		
												r				
CO ₂ Profile	Climate	GCOS	8	6	4	500	350	25	4	2	1	6	4	3		
Lower Stratosphere	Composition & Climate	EUMETSAT	19	12	8	250	100	50	3	2	1	168	24	12		

 GCOS Climate requirements are the most restrictive. For example, objectives of 4-ppm accuracy, 10-km spatial resolution and 3-hour sampling are required in the lower troposphere.

Source: WMO GOS Dossier Volume-5 compiled for WMO by B. Bizzarri.

What are the Detailed Mission Capabilities ?

Detailed mission capability information is not currently available in the MIM or Systems Databases so this step requires extensive web searches. Hopefully, in the future this level of detail will exist in the databases so this process can be automated.

			Resolutions								
Mission	on Instrument		pectral res Spatial (cm-1) Δx (km)		Temporal ∆t (hrs/days)	Total Troposphere Column					
Nadir Absorption,	Total Troposphere C	olumns weig	hted to the	Lower	Troposphere						
ENVISAT	SCIAMACHY	0.5 - 1.5	30 X 60	ľ (840 (35 days)	3.6% (14 ppm)					
GOSAT	TANSO-FTS	0.2	10.5	Į. – Į	72 (3 days)	1% (4 ppm)					
000	OCO Spectrometer	2.0	1.3 x 2.25		384 (16 days)	0.25% (1 ppm)					
ASCENDS	LAS	n/a	TBD	1	384 (16 days)	0.25% (1 ppm)					
Nadir Emission, To	tal Troposphere Co	lumns weight	ed to the M	Aid-Trop	osphere and U	pper-Troposphe					
EOS-AQUA	AIRS / AMSU	0.5 - 2.0	15		384 (16 days)	0.4% (1.5 ppm)					
EOS-AURA	TES	0.025 - 0.10	0.53 x 5.3		384 (16 days)	0.3% (1.3 ppm)					
Metop (A,B,C)	IASI	0.25	12	l l	12	0.5% (2 ppm)					
METOP and NOAA	HIRS	1.8	10		12	1% (4 ppm)					
FY-3 (C,D,E,F,G)	IRAS	0.066	17		12	0.5% (2 ppm)					
NPOESS (1,3,4)	CrIS	0.625	14		12	0.5% (2 ppm)					
Limb Viewing, Stra	tosphere Profiles										
SCISAT-1	ACE-FTS	0.02	500	3	annual	2.5% (10 ppm)					
ENVISAT		0.5 - 1.5	960	3	840 (35 days)	1% (4 ppm)					
SCISAT-2	SCIAMACHY					2.5% (10 ppm)					
OUIONIL	SCIAMACHY ACE-FTS	0.02	500	3	annual	2.5% (10 ppm)					
ENVISAT		0.02 0.035	500 300	3	annual 840 (35 days)	2.5% (10 ppm) 0.7% (3 ppm)					

Which Missions Meet the Requirements ?

Largest issue is temporal sampling near the surface ...

Limited LEO missions do not allow adequate sampling to achieve desired threshold requirement of 24-hr (one-day) repeat cycle. GOSAT is best at 3-days due to its wide (+/- 35-deg) crosstrack scanning capability.

Meets Some or All Objectives (maximum) Meets Some or All Threshold Requirements (minimum) DOES NOT MEET REQUIREMENTS

Detailed Timeline Analysis

	_	_		_		_					_	_						
Mission		09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Lower Troposphe																		
ENVISAT																		
GOSAT														-				
OCO-2											GA	Ρ						
ASCENDS															а – к			
Mid-Troposphere	oos	phe	ere															
EOS-AQUA						1												
EOS-AURA																		
Metop (A,B,C)																		
METOP and NOAA		5	5	5	5	4	4	3	3	2								
FY-3 (C,D,E,F,G)							2	2	3	2	3	2	3	2	2			
NPOESS (1,3,4)											2	2	3	2	2	2	2	2
Stratosphere					ю. а													
SCISAT-1																		
ENVISAT																		
SCISAT-2																		
PREMIER																		

Detailed timeline analysis takes into consideration the instrument type and atmospheric layer.

Largest issue is the potential time gap beyond OCO-2.

It is unlikely that **ENVISAT and GOSAT** will last beyond 2015. In addition, ASCENDS is uncertain for a 2020 launch.

OCO-2 may be the only near-surface CO₂ mission in 2015 with limited repeat cycle(16 days) and spatial coverage (swath width 10-km). 9

Conclusions

Conclusions

- Atmospheric CO₂ measurements in the lower troposphere (near surface), critical for measuring sources and sinks, have a critical time gap beyond 2016. see TIMELINE ANALYSIS
- Temporal sampling requirements are not met for most missions. Threshold requirements are 6 hours for GCOS climate needs, which requires multiple coordinated LEO satellites with wide swath width capabilities like GOSAT. – see REQUIREMENTS ANALYSIS

Lessons Learned

- Future gap analyses efforts will require detailed assessments of timelines and requirements to reach valid conclusions.
- Online automation of the gap analysis process is not yet possible.

Future Work

- Plan to mature agency inventories of missions, instruments and measurements in SEO and MIM Databases.
- Plan to add more space-based measurement requirements for key parameters such as climate ECVs and include a broader list of sources.

The full CO₂ Gap Analysis report is available on the CEOS website.