

GOME-type Total Ozone Data Record

Diego Loyola, M. Coldewey-Egbers, W. Zimmer (DLR)M. Van Roozendael, C. Lerot, J.-C. Lambert (BIRA)R. Spurr (RTS), D. Balis, M. Koukouli (AUTH)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft CEOS-ACC, Washington, April 19th, 2012

Outline

- Climate-Chemistry Models Evaluation
- → GDP 5.0
- → Outlook

Overview – GOME, SCIAMACHY, and GOME-2

- → Passive remote sensing grating spectrometers
- ✓ Sun-synchronous and near-polar morning orbit at a height of ~790km

	GOME	SCIAMACHY	GOME-2
Satellite	ERS-2	ENVISAT	METOP-A
Data Availability	06/1995-07/2011	08/2002-present	01/2007-present
Spectral Coverage	240-790 nm	240-2380 nm	240-790 nm
Spectral Resolution	0.2 - 0.4 nm	0.2 – 1.5 nm	0.2 – 0.4 nm
Viewing Geometries	Nadir	Nadir, Limb, Occult.	Nadir
Ground Pixel Size	320 x 40 km ²	60 x 30 km ²	40 x 80 km ²
Swath Width	960 km	960 km	1920 km
Equator Crossing	10:30 a.m. LT	10:00 a.m. LT	09:30 a.m. LT
Global Coverage	3 days	6 days	Almost daily
Repeat Cycle	35 days	31 days	29 days

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

GOME-type Total Ozone – GDP 4.x Overview

- ✓ Two steps GDOAS approach
 - ➤ DOAS fit for <u>ozone slant column</u> and <u>effective temperature</u>
 - Iterative AMF/VCD computation using a single wavelength
- \checkmark Improved O₃ Retrieval
 - ➤ Molecular Ring correction (Van Roozendael et al., JGR 2006)
 - ➤ On-the-fly RTM simulations LIDORT v3.3 (Spurr, 2003)

 - ➤ Adaption to SCIAMACHY (Lerot et al., AMT 2009)
 - ✓ Intra-cloud, sun-glint and scan angle corrections (Loyola et al., JGR 2011)
- Independent Geophysical Validation

 - **7** ...
 - ➔ Antón et al., RSE 2011
 - ➔ Antón and Loyola, JGR 2011
 - ✓ Koukouli et al., AMTD 2012

GOME-type Total Ozone – Satellite drifts

GOME-type Total Ozone – Merging Strategy

Inter-Satellite Calibration: Select one data set as reference (GOME) and correct others (SCIAMACHY and GOME-2) for spatial and temporal biases and drifts

7 Pros:

- ground-based data can be used for geophysical validation
- merged product can be used for climate model evaluation
- Cons: possible drift on absolute accuracy

GOME-type Total Ozone – Merging Strategy (2)

✓ Alternatives for correcting the spatial and temporal biases and drifts:

➤ Polynomial adjustment:

Loyola D., Coldewey-Egbers M., Dameris M., Garny H., Stenke A., Van Roozendael M., Lerot C., Balis D., Koukouli M., *Global long-term monitoring of the ozone layer - a prerequisite for predictions*, International Journal of Remote Sensing, vol. 30, no. 15, pp. 4295-4318, 2009

Artificial neural network adjustment:

D. Loyola and M. Coldewey-Egbers, *Multi-sensor data merging with stacked neural networks for the creation of satellite long-term climate data records*, EURASIP Journal on Advances in Signal Processing, in press, 2012

Total Ozone – GOME-2 and OMI issues in 2009-2011

GOME-2 throughput tests

GOME-type Total Ozone – Adjustment Factors

Polynomial adjustment for GOME-2

SNN adjustment for SCIAMACHY

SNN adjustment for GOME-2

GOME-type Total Ozone – Essential Climate Variable

Monthly Mean Ozone (60°N-60°S)

GOME-type Total Ozone – ECV Preliminary Validation

Outline

- → GDP 5.0
- → Outlook

Intercomparison: Data Sets

Satellite Observations

- **GTO-ECV_v0:** GOME-1, SCIAMACHY, and GOME-2, 1995-2009, 1°lat x 1°lon, Loyola *et al.*, IJRS, 2009. (http://atmos.caf.dlr.de/gome/gto_ecv.html)
- NASA-MOD: TOMS, SBUV(/2), and OMI, 1978-2009, 5°lat x 10°lon, Stolarski and Frith, 2006. (http://acdb-ext.gsfc.nasa.gov/Data_services/merged/mod_data.public.html)

Chemistry Climate Models

- **E39C-A:** ECHAM4.L39(DLR)/CHEM/-ATTILA, 1960-2050, 3.75°lat x 3.75°lon, Stenke *et al.*, 2008.
- **UMUKCA-UCAM:** Unified Model / UK Chemistry and Aerosols Module University of Cambridge, 1960-2100, 2.5°lat x 3.75°lon, Morgenstern *et al.*, 2009.

Ground-Data: 32 Brewer and 47 Dobson Stations, 1995-2008, 5°lat x 5°lon, Balis *et al.*, 2007.

Total Ozone Comparison – Zonal Means

Total Ozone Comparison – Global Distribution

Total Ozone Comparison – Decadal Evolution

Fig. 12, Dameris and Loyola, Climate change book, 2011

Total Ozone Comparison – Trends

17

Outline

- Climate-Chemistry Models Evaluation
- → GDP 5.0

GDP 5.0 – GODFIT Principles

Direct fit of GOME reflectivity 0.044 Iteration 3 – VCD=250 DU using on-the-fly MS radiative 0.042 transport calculations (LIDORT) 0.04 ✓ Temperature (*T-shift*) adjustment, based on T°-dependence of ozone cross-sections (Brion et al.) ₩ 0.036 Parameterised Ring correction 0.034 \checkmark Cloud correction with v2.0 of 0.032 OCRA/ROCINN Measurement 0.03 Simulation Tikhonov regularisation inversion 0.028 L____ 325 326 327 328 329 330 332 333 334 335 solved with the Levenberg-331 wavelength (nm)

$$R_{\lambda}^{GOME} = I_{\lambda}^{LIDORT}(O_3, A, T_{shift}, f_c, P_c) + E_{Ring} \cdot \sigma_{\lambda}^{Ring}(O_3) + \varepsilon$$

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Marquardt iterative method

GDP 5.0 – Product Content

Ozone Total Column

GODFIT residuals

 → Effective Temperature

✓ Averaging Kernels

GDP 5.0 – Geophysical Validation

GDP 5.0 – Geophysical Validation (2)

DLR

22

GDP 5.0 – Status

7

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D03305, doi:10.1029/2011JD016471, 2012

Sixteen years of GOME/ERS-2 total ozone data: The new direct-fitting GOME Data Processor (GDP) version 5—Algorithm description

M. Van Roozendael,¹ R. Spurr,² D. Loyola,³ C. Lerot,¹ D. Balis,⁴ J.-C. Lambert,¹ W. Zimmer,³ J. van Gent,¹ J. van Geffen,¹ M. Koukouli,⁴ J. Granville,¹ A. Doicu,³ C. Fayt,¹ and C. Zehner⁵

 GOME GDP 5.0 products, documentation (ATBD, validation report, PUM) and imagery will be delivered in May/June

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

http://atmos.caf.dlr.de/gome

Outline

- Climate-Chemistry Models Evaluation
- → GDP 5.0
- → Outlook

GOME-2 and GMES Atmosphere

Sentinel 5 Precursor – Payload Segment at DLR

Sentinel 5 Precursor – Level 2 Products

Product	Algorithm Prototyping	Independent Verification	Operational Processor
Coordinator	КИМІ	IUP	DLR-IMF
O ₃ total column	DLR-IMF/BIRA	KNMI	DLR-IMF
O ₃ profile (incl. troposphere)	KNMI	RAL/IUP	KNMI
<i>O₃ tropospheric column</i>	IUP	KNMI/DLR-IMF/IUP	DLR-IMF
NO ₂ total & tropospheric column	KNMI	IUP/DLR-IMF/MPIC	KNMI
SO ₂	BIRA	MPIC/DLR-IMF	DLR-IMF
НСНО	BIRA	IUP	DLR-IMF
СО	SRON	IUP	KNMI
CH ₄	SRON	IUP	KNMI
Clouds	DLR-IMF	KNMI/MPIC/IUP	DLR-IMF
Aerosols	KNMI	MPIC/IUP	KNMI

Ozone Long-Term Monitoring with European Sensors

