Resourcesat-2/2A Surface Reflectance Validation over RADCALNET & CEOS CAL/VAL sites

> LSI-VC-14 10 Oct 2023

> > T.Radhika

NRSC/ISRO

LSI-VC-13: QUICK RECAP..

CONTROL & Confidence in Algorithms

- RS-2/2A SR generation is fully automated
- RS2 is harmonized with reference to RS2A
- Radiometric Accuracy is around 95 % Validated with In-situ & OLI over Indian terrain
- Geometric accuracy is better than 1 pixel
- SR Products can be ordered from Bhoonidhi.
- ARD sets are generated over 3 sample areas from 2017 to 2022
- Requested LASRC-generated AOD datasets over Indian region-Received 10no.s
- SR Products over Global terrains would be provided for the endorsement

OBJECTIVE -1 : ABSOLUTE VALIDATION WITH RADCALNET

- 1. SR products from RS-2/2A L3 and AWiFS sensors over the sites since launch (2013 & 2017) are generated using 6S-RT code by using auxiliary information provided with Meta file and ancillary data sets from CAMS.
- 2. The Radcalnet provides the corrected reflectance values over four instrumented reference test sites namely Railroad Playa(USA), Baotou(China), La Crau (France) and Gobabeb(Namibia) at 30 minute intervals from 9am to 3pm.
- 3. Each site is equipped with automated ground-based radiometers and spectrometers that are used to measure surface and atmospheric parameters for the simulation of TOA reflectance.
- 4. The spectral range is 400-2500nm sampled at 10nm.
- 5. These sites can be used for validation of medium resolution sensors like L8/L9, Sentinel-2 MSI and L3.
- 6. Ground reflectance (BOA) from Radcalnet site is converted to R2/2A sensor's reflectance using spectral response function of the sensor's band as

$$\rho(\lambda)_{i} = \frac{\int_{\lambda_{1}}^{\lambda_{2}} \rho(\lambda) S_{i}(\lambda) d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} S_{i}(\lambda) d\lambda}$$

Where $S_i(\lambda)$ is the sensors spectral response function and is spectral reflectance value.

7. Data measured at satellite overpass local time is considered for the comparison.

Spectral profiles of five target sites

RVU- Left: RA -252/43, DOP: 14Oct2022, Centre: R2-252/53, DOP: 08Sep2022 Right: OLI L8-40/33, DOP: 04Sep2022

LFCR- Left: RA -23/38, DOP: 19Feb2023, Centre: R2-23/3 DOP: 30Jul2022 Right: OLI L8-196/30, DOP: 16Feb2023

nrs

GONA- Left: RA -49/95, DOP: 05Jun2023, Centre: R2-49/95, DOP: 30Apr2023 Right: OLI L8-179/76, DOP: 01Jun2023 BSCN &BTCN-Left: RA -123/41, DOP: 22May2023, Centre: R2-123/41, DOP: 03Jun2023 Right: OLI L8-128/32, DOP: 12Jun2023

RCN VS R2A-L3 : ALL SITES SINCE 2017

रूमरो इसरो **NrSC**

L3-Accuracy metrics over RCN : from all the observations for R2/RA/L8 over five sites

RS-2	SSIM	RMSE	slope	offset	R ²	SMAPE
B2	0.809	0.018	0.702	0.007	0.945	15.009
B3	0.819	0.021	0.748	0.006	0.943	12.802
B4	0.778	0.030	0.589	0.081	0.877	9.383
B5	0.806	0.037	0.576	0.083	0.585	12.232
RS-2A						
B2	0.908	0.015	1.001	-0.012	0.962	5.247
B3	0.871	0.017	0.945	-0.012	0.951	6.874
B4	0.792	0.019	0.863	0.021	0.868	5.898
B5	0.728	0.025	1.046	-0.051	0.787	5.555
L8-OLI						
B3	0.8423	0.020	0.932	0.01	0.941	3.748
B4	0.8442	0.022	0.972	0.008	0.944	3.477
B5	0.813	0.024	0.884	0.043	0.898	3.621
B6	0.8348	0.027	1.010	-0.008	0.781	2.527

OBJECTIVE -2 : RELATIVE VALIDATION WITH OLI OVER RCN & CEOS SITES

- 1. L8/9 OLI SR products were aggregated using nearest neighbour interpolation techniques to match the resolution of L3 and AWIFS.
- 2. ROIs (2 to 4km area) are extracted from near synchronous L8/9 and L3 datasets on the site location.
- 3. Band wise Standard least squares linear regression was then used to represent the differences in surface reflectance between OLI and RS-2/2A pixels.
- 4. Parameters such as MAD, RMSE, SMAPE, SSME were computed to quantify the agreement

RS-2A:L3 VS L8-OLI over RCN sites

RA

B5

SR: Relative validation with OLI over RCN

R2 vs L8	slope	offset	R ²	SSIM	SIM corr		SSE	MAD
B2	0.817	-0.012	0.881	0.819	0.939	0.024	0.019	0.025
В3	0.827	-0.013	0.906	0.850	0.951	0.024	0.018	0.022
B4	0.729	0.035	0.848	0.835	0.921	0.023	0.017	0.016
В5	0.649	0.049	0.807	0.842	0.898	0.024	0.019	0.021
RA vs L8								
B2	1.046	-0.018	0.989	0.971	0.994	0.009	0.002	0.008
В3	0.947	-0.013	0.982	0.942	0.990	0.013	0.004	0.012
B4	1.046	-0.045	0.956	0.913	0.977	0.018	0.009	0.010
В5	0.963	-0.015	0.938	0.891	0.968	0.021	0.012	0.009

SR: Relative validation with OLI over CEOS CAL sites

Rail Road Playa

Ivanpah Playa

Libya-4

Lake Tahoe

Sioux Falls

AWIFS : CEOS TARGETS & DATA SETS

Sl.No	CEOS site	RS2/2A path/Row	Date of Pass	L8/L9 path/row	Date of Pass	
1.	Ivanpah Plava	RS2 253/45	04Feb2023	L9 39/35	04Feb2023	
	(USA)	RA_253/45	29Apr2023	L8_39/35	25Apr2023	
2.	Rail Road Playa	RS2_252/43	2600ct2022	L9_40/33	300ct2022	
	(USA)	RA_252/43	140ct2022	L9_40/33	140ct2022	
3.	Sioux Falls (USA)	RS2_267/38	11Sep2022	L8_29/30	07Sep2022	
		RA_268/38	28Sep2022	L9_29/30	010ct2022	
4.	Lake Tahoe (USA)	RS2_247/42	07Sep2022	L9_43/33	01Sep2022	
		RA_247/42	26Jun2019	L9_43/33	29Jun2019	
5.	Libya-4 (Africa)	RS2_45/51	17Mar2023	L9_181/40	19Mar2023	
		RA_45/51	03Apr2022	L8_181/40	09Apr2022	

L-3: TARGETS & DATA SETS ...

Sl.No	CEOS site	RS2/2A path/Row	Date of	L8/L9	Date of	
			Pass	path/row	Pass	
1.	Ivanpah Playa	RS2_253/45	04Feb2023	L9_39/35	04Feb2023	
	(USA)	RA_253/45	29Apr2023	L8_39/35	25Apr2023	
2.	Rail Road Playa	RS2_252/43	2600ct2022	L9_40/33	300ct2022	
	(USA)	RA_252/43	140ct2022	L9_40/33	140ct2022	
3.	Sioux Falls (USA)	RS2_267/38	11Sep2022	L8_29/30	07Sep2022	
		RA_268/38	28Sep2022	L9_29/30	01Oct2022	
4.	Lake Tahoe (USA)	RS2_247/42	07Sep2022	L9_43/33	01Sep2022	
		RA_247/42	26Jun2019	L9_43/33	29Jun2019	
5.	Libya-4 (Africa)	RS2_45/51	17Mar2023	L9_181/40	19Mar2023	
		RA_45/51	03Apr2022	L8_181/40	09Apr2022	

RS2A : **RESULTS**

रूम इसरो nrsc

Over all agreement with L8_SR

	Green Band(B2)			Red band (B3)		NIR band(B4)			SWIR band(B5)			
AWiFS	Slope	Offset	R ²	Slope	Offset	R ²	Slope	Offset	R ²	Slope	Offset	R ²
IVP	0.986	-0.002	0.968	0.936	0.01	0.971	0.756	0.095	0.799	0.95	0.014	0.965
RUV	1.003	0.002	0.994	0.935	0.02	0.995	1.052	-0.039	0.974	1.024	0.008	0.98
LIB	0.963	0.017	0.985	0.951	0.017	0.98	0.872	0.06	0.951	0.941	0.024	0.923
SF	0.869	0.024	0.947	0.961	0.013	0.955	1.123	0	0.972	0.952	0.019	0.962
LT	1.137	0.001	0.965	1.073	0.007	0.959	0.836	0.026	0.944	1.121	0.013	0.972
L3	Slope	Offset	R ²	Slope	Offset	R ²	Slope	Offset	R ²	Slope	Offset	R ²
IVP	1.035	0.068	0.978	0.944	0.106	0.884	0.933	0.069	0.968	1.001	0.085	0.828
RUV	0.917	0.008	0.991	0.837	0.012	0.993	0.887	0.001	0.948	0.928	-0.018	0.989
LIB	0.944	0.049	0.854	0.943	0.033	0.875	0.929	0.084	0.866	1.032	0.037	0.93
SF	0.94	-0.012	0.944	0.887	-0.005	0.968	0.809	0	0.887	0.971	-0.044	0.962
LT	0.901	0	0.925	0.854	0.001	0.949	0.856	0.005	0.96	0.907	-0.007	0.956

LSI-VC-14: Summary..

Confidence in accuracies

- SR Product accuracy is around 95% with ground measurements & OLI
- Accuracy is consistent since launch
- ARD Products are ready for endorsement

