

Global Climate Observing System

- The GCOS program was funded in 1992 by WMO, IOC/UNESCO, UNEP, ICSU, and was mandated to define objectives and recommend coordinated actions for a global observing system for climate, building on and enhancing existing systems.
- · The initial plan called for a system based on:
 - · Fundamental scientific priorities
 - Prioritized observational requirements, informed by scientific and technical progress and evolving user needs
- Priorities were further elaborated by exploring which physical variables or combination of variables would be most suitable for long-term climate monitoring (Karl 1996, and Trenberth 1996).

WGClimate

5th I SI-VC meeting April 4 2024 Tokyo Janes

Essential Climate Variables

- "Essential Climate Variables (ECVs)" was first introduced by GCOS in 2003 in its report on the adequacy of the global observing systems for climate in support of the UNFCCC.
- GCOS has identified a set of ECVs and updated their observational status every six years in GCOS status report.
- GCOS also publish a subsequent implementation plan for developing a global climate observing system to meet increasing and more diverse needs for data and information.
- Space agencies have responded to the ECV concept:
 - ESA Climate Change Initiative
 - EUMETSAT Climate Monitoring Satellite Application Facility
 - NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs)

WGClimate

What are the ECVs?

998666

* 0 & * 1 T

0303

- An ECV is a physical, chemical, or biological variable or a group of linked variables that critically contributes to the characterization of Earth's climate.
- ECV datasets provide the empirical evidence needed to:
 - understand and predict the evolution of climate
 - guide mitigation and adaptation measures
 - assess risks and enable attribution of climatic events to underlying causes
 - underpin climate services
- Most/some of the essential needs for sustained observation identified by the WCRP and enabling the work of the IPCC are based on the ECVs.

15th LSI-VC meeting, April 4, 2024, Tokyo, Japan

ECV identification criteria

- Relevance: The variable is critical for characterizing the climate system and its changes.
- Feasibility: Observing or deriving the variable on a global scale is technically feasible using proven, scientifically understood methods.
- Cost effectiveness: Generating and archiving data on the variable is affordable, mainly relying on coordinated observing systems using proven technology, taking advantage where possible of historical datasets.

Bojinski et al. (2014)

WGClimate

GCOS currently specifies 55 ECVs

- Earth radiation budget
- Temperature
- · Wind speed and direction
- Atmospheric composition
 - Carbon dioxide, methane and other GHG
 - Precursors for aerosols and ozone

 - Water vapor
 - · Wind speed and direction

GCOS currently specifies 55 ECVs

WGClimate

https://gcos.wmo.int/en/essential-climate-variables/table

- Physical
 - Ocean surface heat flux
 - Sea ice
 - Sea level
 - · Sea state
 - Sea surface currents
 - · Sea surface salinity
 - Sea surface stress
 - Sea surface temperature
 - Subsurface currents
 - Subsurface salinity
 - Subsurface temperature
- Biogeochemical
 - Inorganic carbon
 - Nitrous oxide
 - Nutrients
 - Ocean color
 - Oxygen
 - Transient tracers
- Biological/Ecosystems
 - Marine habitats
 - plankton

38 ECVs are observable from space

15th LSI-VC meeting, April 4, 2024, Tokyo, Japan

- Upper-air
 - Earth radiation budget
 - Lightning
 - Temperature
 - Water vapor
 - · Wind speed and direction
- Atmospheric composition
 - Aerosols
 - Carbon dioxide, methane and other GHG
 - Clouds

 - · Precursors for aerosols and ozone
- Surface
 - Precipitation
 - Pressure

WGClimate

- Radiation budget
- Temperature
- Water vapor
- Wind speed and direction

Land (16)

- Hydrosphere Ground water
 - Lakes
 - River discharge

 - Soil moisture Evaporation from land Terrestrial water storage
- cryosphere
 - Glaciers
 - Ice sheets and ice shelves Permafrost
- Biosphere
 - Above-ground biomass Albedo

 - Fire FAPAR

 - Land cover Land surface temperature Leaf area index
- Anthroposphere
 - Anthropogenic GHG fluxes
 - Anthropogenic water use

- Physical
 - Ocean surface heat flux

 - Sea state
 - Sea surface currents
 - Sea surface salinity
 - Sea surface temperature
 - · Subsurface currents
 - Subsurface salinity
 - · Subsurface temperature
- · Biogeochemical
 - Inorganic carbon
 - Nitrous oxide

 - Oxygen
 - · Transient tracers
- Biological/Ecosystems
 - Marine habitats
 - plankton

Joint CEOS/CGMS working group on climate

- The over-arching goal of the joint CEOS/CGMS
 Working Group on Climate is to improve the
 systematic availability of Climate Data Records
 through the coordinated implementation, and
 further development of the architecture for
 climate monitoring from space: REAL SINGLE (REAL SINGLE CLIMATE)
 - Providing a comprehensive and accessible view of existing and planned climate data records;
 - Delivering further climate data records, including multi-mission, through best use of available data to fulfil GCOS requirements;
 - Optimizing the planning of future satellite missions and constellations to expand existing and planned climate data records.

15th LSI-VC meeting, April 4, 2024, Tokyo, Japan

ECV Inventory: Comprehensive view of existing and planned CDRs

https://climatemonitoring.info/ecvinventory/

WGClimate
The lord CEOS/CGMS

CDRs of land ECVs in the Inventory

- Hydrosphere
 - Ground water: 1
 - Lakes: 6
 - River discharge
 - Soil moisture: 55
 - Evaporation from land: 0
 - Terrestrial water storage: 0
- Cryosphere
 - · Glaciers: 1
 - Ice sheets and ice shelves: 7
 - Permafrost
 - Snow: 7

- Biosphere
 - Above-ground biomass: 1
 - Albedo: 34
 - Fire: 32
 - FAPAR: 14
 - Land cover: 12
 - Land surface temperature: 22 —
 - Leaf area index: 14
 - Soil carbon
- Anthroposphere
 - Anthropogenic GHG fluxes: 0
 - Anthropogenic water use

Only 1 existing CDRs in the Inventory has a spatial resolution (30 m) meet the GCOS spatial resolution requirement.

5th I SI-VC meeting April 4 2024 Tokyo Japan

Space agency response to GCOS IP

- For all land-related actions in GCOS IP 2022, we have teams in place to address them.
- WGClimate invites LSI-VC to review our responses to these actions to ensure they are accurate and comprehensive.

WGClimate

C5: ECV-specific satellite data processing method improvements

- Generate timely permafrost, land cover change, burnt area, and fire severity/burning efficiency products from high resolution satellite observations (e.g., Sentinel-1 /-2 and LandSat).
- Ensure that the Bidirectional Reflectance Distribution Function (BRDF) parameters are provided together with surface albedo.
- Improve consistency of the inter-dependent land products.

15th LSI-VC meeting, April 4, 2024, Tokyo, Japan

F1: Responding to user needs for higher resolution, near real time data

• Improve biomass, land cover, land surface temperature, and fire data with sub-annual observations and improved local detail and quality.

F2: Improved ECV satellite observations in polar regions

- Surface temperatures of all surfaces (sea, ice, land)
- Albedo for all surfaces (land and sea-ice)

