

CNES Activity Report for CEOS WGCV

Patrice HENRY CNES – Toulouse

Activity for CNES project in orbit

JASON 2

- Completion of in flight commissionning phase
- Very good performances
- Missions in operation
 - Monitoring of IASI calibration : excellent performances
 - PARASOL, IIR (Calipso), SPOT HR, VGT : routine calibration operation
 - Reprocessing of VGT1 calibration to insure 10 years of consistent data (VGT1 + VGT2)

Activity for CNES project in development phase

Pleiades

- Final instrument characterization \Rightarrow all performances above specification
- Calibration & performance assessment Centre development in progress
- Definition of calibration methods (geometric and radiometric) to be applied during in flight commissioning
- Venµs
 - Definition of processing algorithms
 - Stray light characterization and correction

2008 CNES study over desert sites

Establishing a method for directional ground reflectance characterization

- Improvement of atmospheric correction
- Study of several BRDF models
- Definition of an iterative filtering method (to get rid of data affected by atmospheric problem)

Focusing on the 5 CEOS selected sites

• Computation of directional characterization for 5 spectral bands : $\rho(\theta_s, \theta_v, \Delta \phi)$

Main conclusions

- Very good results except in the 'blue' range
- Proof of existing models limitation
- Definition of a range of geometrical condition acceptable for accurate cross calibration process

Final results (1)

Final results (2)

Libya 1 site – 565 nm band (Snyder model)

CEOS Cal/Val – Avignon – Sept 30-Oct 3, 2008

Final results (3)

Filtering effect (1)

Filtering effect (2)

2008 CNES study over Dôme C sites

Dôme C sites characterization using :

- 6 years of VGT1 images (Nov. 1998 to Feb. 2004)
- 5 years of VGT2 images (Nov. 2002 to Feb. 2007)
- Main objectives :
 - Effect of atmospheric correction
 - BRDF modelling of data
 - Sites behaviour and (if possible) selection of a 'top' site
 - Accuracy assessment
- Final goal :
 - Use of Antarctica sites for multitemporal calibration
 - Use of Antarctica sites for sensors cross calibration

Dôme C area : selected sites comparison

- RAL (ESA) :
 - ATSR, MERIS
 - Dôme 4 (100x100 km²)
- NASA :
 - (MODIS, SeaWiFS)
 - Dôme C (20x20 km²)
 - **CNES**:
 - VGT, PARASOL, SPOT
 - Dôme 1, 2, 3 & C (100x100 km²)

Dôme C characterization using VGT images

Choice of 4 calibration sites

large zone (480*360 km²) more suitable for calibration

✤ Calibration over different zones allows to distinguish sensor behaviour from site behaviour

Need for atmospheric correction (1)

VGT2 data over Dôme 1 (blue band)

• Plotted against sun zenith angle

• Plotted against scattering angle

Need for atmospheric correction (2)

VGT2 data over Dôme 2 (blue band)

• Plotted against sun zenith angle

Need for atmospheric correction (3)

Data fit with a BRDF model

Warren BRDF model

Cross calibration of sensors over Dôme C

VGT1 / VGT2 cross calibration over Dôme 1

- 4 spectral bands (blue, red, NIR, SWIR)
- BRDF modelling
- 6 years of VGT1 vs
 5 years of VGT2

Recommendations for calibration over Dôme C

- Atmospheric correction is to be applied
 - First level correction with standard parameters
 - Ozone measurements mandatory
- Sun zenith angle lower than 75°
- Use of several sites to get rid of site behaviour
- As many as possible acquisitions every day during austral summer
- For sensors cross calibration : use of a BRDF model (Warren model recommended)
- Dome-C can also be used for low temperature TIR channels calibration

THANK YOU