VEGA

Calibration Test Sites Selection and Characterisation

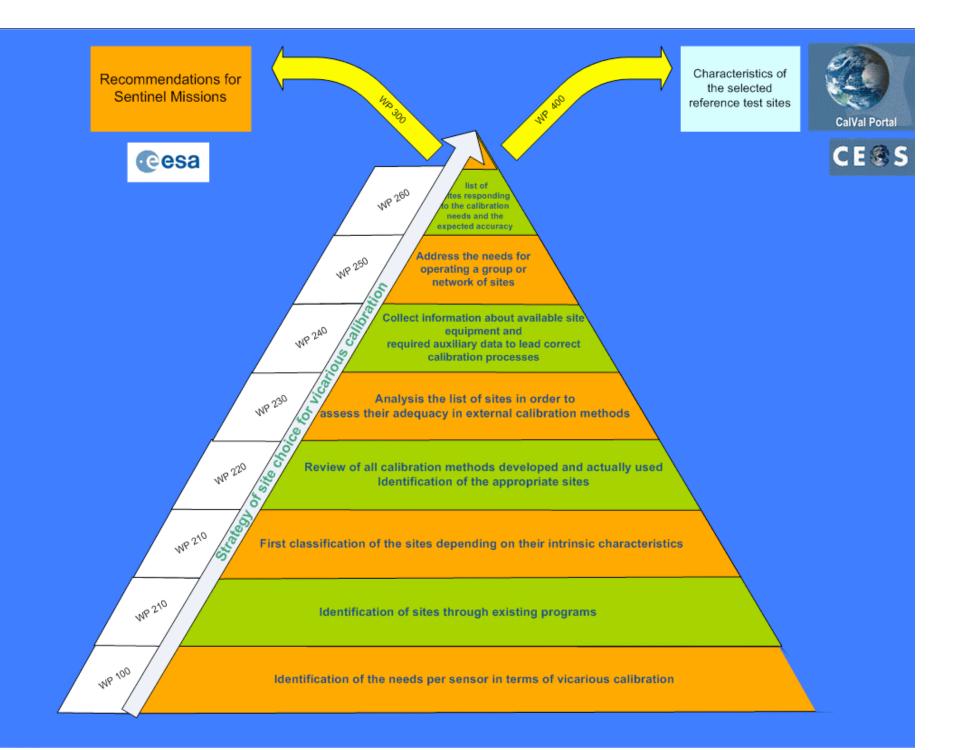
Ceos Meeting INRA/AVIGNON – 2008/09/30

Context

The study is a contribution to CEOS/WGCV strategy to ensure the quality of data for current and future missions (Calibration, Validation, Operational quality)

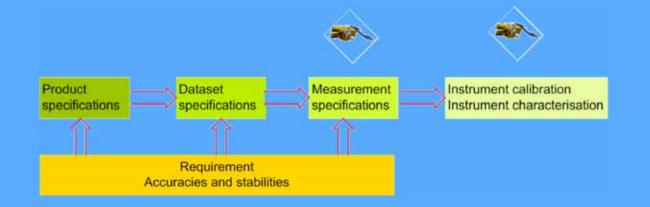
The study focuses on Calibration in relation to

- the CEOS activities through Cal/Val Working Group (WGCV),
 - Sites identification
 - Sites characterisation
- the Cal/Val portal
 - Data
 - Methodologies
 - Recommendations
- the key people who manage calibration activities (sites, programs etc)


Project overview

Objectives :Select, identify and characterise reference test sites used for the calibration and characterisation of sensors

- Method and sites overview
- Define a strategy to calibrate and cross calibrate future missions



Task1 : Analysis of the external calibration requirements

Objectives : identify the needs

- What do we want to observe from space?
- What variable (e.g. ECV) can be obtained?
- Establish the requirements on the products
 - In terms of Accuracy and stability
- Relate it satellite measurements (relationship is not direct and non linear)

Analysis of the external calibration requirements

Specifying the requirements on the radiometric and spectral performances of a satellite sensor can be done by:

- Sensitivity studies including complete calibration
 - Radiometric calibration
 - Geometric calibration
 - Instrument characterisation (Image quality)
- But the stability of the instrument is not guarantied to achieve the product requirement with time (device degradation)
- How vicarious calibration can help to meet the requirements?
 - Structure the approach
 - Class of sensors
 - Recommendations
 - Needs for vicarious calibration

Analysis of the external calibration requirements

WP 110 – Sensor classification

Class number	Sensor type
Class 1	 Synthetic Aperture Radar Radar altimeter Microwave radiometer
Class 2	 Optical sensor medium resolution Geostationary instruments
Class 3	 Optical sensor high resolution
Class 4	 Atmospheric instruments

Class 2 main characteristics

Large FOV (BRDF)
Good revisiting time
Large pixels (spatial sampling)
Narrow filters

Class 3 main characteristics

Small FOV
Poor revisiting time (accuracy)
Small pixels
Large filters (spectral sampling)

Class 4 main characteristics

large FOV
Poor revisiting time (accuracy)
large pixels
Very Narrow filters

Class 2 specification summary

Sensor	Product spec	Calibration spec
Meris	Chl.A (30%), Sediment (30%)	2 % absolute
AATSR	SST	0.3 K (0.1 stability)
ATSR2	radiances	5%
AVHRR/3	SST	Few tenth of degree
	radiances	1; 2%
VGT		Absolute calibration accuracy 5%
		Multidate calibration accuracy 3%
		Interband calibration accuracy 3%
		HRVIR/VGT intercalibration accuracy 3%
MODIS		5% < 3μm ; 1% > 3μm
SeaWiFS	Chl. 1 (35 %)	5% absolute; 1% relative
SEVIRI		1K
		5%
ОСМ		
MISR		Accuracy :3% absolute, 1% relative
		Stability 0.5%/month 2% /1 year
PARASOL		2% < 565 nm absolute; 3% > 565 nm
		1% channel intercalibration

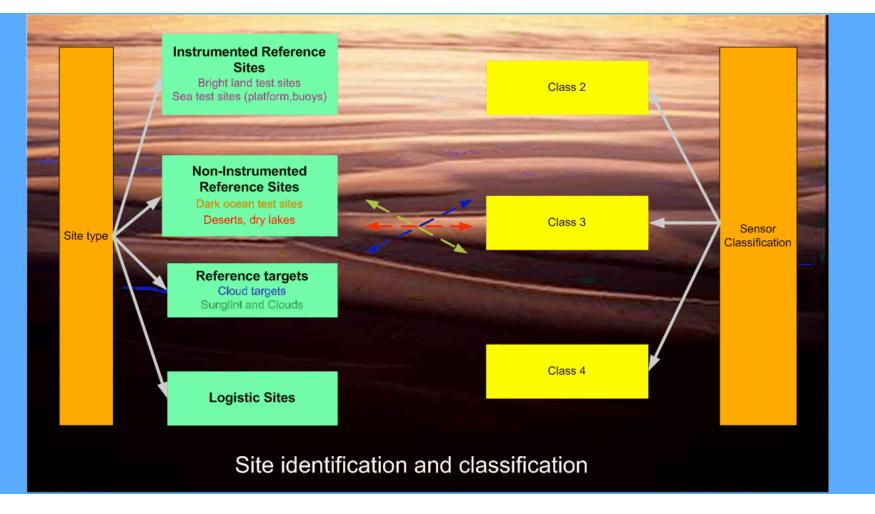
Class 3 specification summary

Sensor	Product spec	Calibration spec
SPOT 4/5		10%
Venµs	LAI	3-5% absolute, 3% interband
ETM		5% absolute
DMC		2-5% absolute

Only radiometric requirements

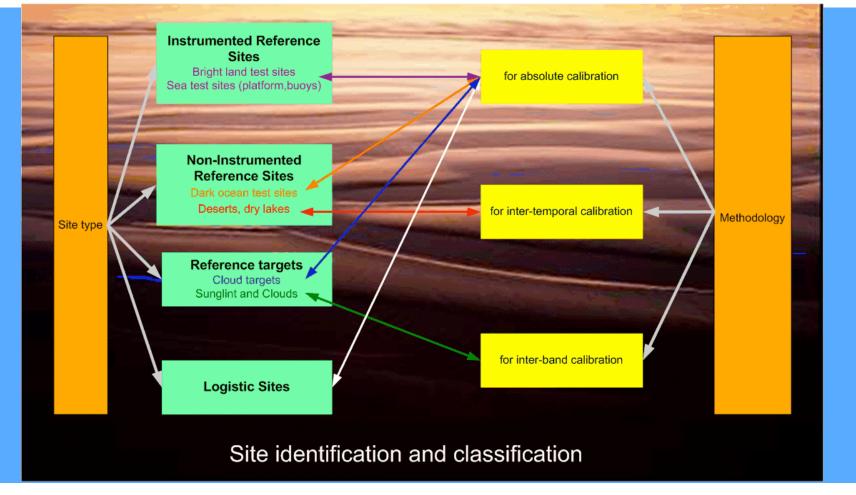
Conclusion

Ocean : product specification available (SST, OC) (Class 2)


• \rightarrow calibration specification

 Land : for most of sensors, there are no link between product specification and calibration accuracy (Class 2/3)

- Calibration specification found 5% (absolute) Nothing for class 3
- Class 2 : Internal Calibration + vicarious
- Class 3 : vicarious



Recommendations

Relationship with method

Relation between class of sensors and radiometric calibration sites

Correspondance between class and sites types for

- absolute,
- intertemporal
 - LES : Land Equipped Site
 - SES : Sea Equipped Site
 - LNES : Land Non Equipped Site
 - SNES : Sea Non Equipped Site
 - R: Recommanded
 - O: Optional
 - Cross Cal: Cross calibration from class i to class j

	Land Eq. Site	Sea Eq. Site	Land Non Eq. Site	Sea Non Eq. Site
Class 2	0	0		R
Class 3	R	R	Cross Cal Clas (2,3)	O, Cross Cal Clas (2,3)

Intertemporal

Abcoluta

	Land Eq. Site	Sea Eq. Site	Land Non Eq. Site	Sea Non Eq. Site
Class 2			R	R
Class 3			R	R

WP210 - Identification and description of calibration sites through existing programs

Identification of the main key-actors (e.g. PI) in calibration activities
 Collection of information describing the sites (localisation, size, surface type)
 Identification of the operations conducted on the site (frequency, experimental campaigns ...)

- Information collected from various sources: common scientific community knowledge, technical publications, web information, expert networks, committees, direct contact with project leaders
- \rightarrow Questionnaires dedicated to site characterisation (radiometry and geometry)
- \rightarrow Difficulty to identify the future activities :

Suggestion of R. Santer : Ask to calibration responsible to communicate about the calibration activities in CEOS or calval bulletin.

Questionnaires : Land Equipped Site

Cal	ibration test sites characteristics
Instrument	ted Reference test site for absolute calibration
	(Land)
	· · ·
	Identification and characterisation
Site Name	
Location	
Google Earth	
Image	
1x1 degree	
around the site	
around the site	
around the site center	
around the site center Altitude	

Sea Equipped Site

Calibration test si	te selection and characterisation	CALIB-WES-WP210-VEGA-001
Cali	bration test sites cha	aracteristics:
Instrum	ented Reference test calibration	site for absolute
	(Over Ocean: Platform	n, buoys)
	Identification and charac	cterisation
Site Name		
Location		
Google Earth Image		
1x1 degree around the site center		
Description		
Env ironment		

Topography

Calibration test site selection and characterisation CALIB-LES-WP210-VEGA-001

Communication mean

Owner

Logistic information Site proximity from road: Access Nearest town Distance from nearest town/port Logistics (Hotel, Restaurant, ...)

Calibration test site selection and characterisation CALIB-WES-WP210-VEGA-001

Logistic	information
Other and the first second second	
Site proximity from seaport:	
Distance from nearest port	
Logistics (Hotel, Restaurant,)	
Communication mean	
Owner	

Page 6 of 11 VEGA Technologies 8AS Copyright © 2008 VEGA Group PLC Page 5 of 10 VEGA Technologies 8AS Gy I ECNNICAI EXCELLENCE | Pragmatic Solutions | I Tovert Derivery

Calibration test site selection and characterisation CAL

General atmospheric conditions

Clear sky conditions:

Atmosphere characterisation Seasonal variation of the aerosol

Wind :

Meteorological conditions
Annual pluviometry

Site Climatology

CALIB-LES-WP210-VEGA-001

Calibration test site selection and characterisation CALIB-

CALIB-WES-WP210-VEGA-001

General atmospheric conditions			
Meteorological conditions			
Average monthly insolation time (in 24h)			
Atmosphere characterisation			
Seasonal variation of the aerosol and of the v	vater v a	pour	
Surface characterisation (water body)			

Alpha:		
Seasonal variation of the water vapour content		
Surface characterisation		
Surface albedo	-	
BRDF		

Page 7 of 11

VEGA Technologies SAS Copyright © 2008 VEGA Group PLC

Calibration test site selection and characterisation

CALIB-LES-WP210-VEGA-001

Site instrument	tation (Nominal)
Meteorological instrumentation (list)	
Meteo station (Temperature, pressure, humidity)	
pluviometer	
Anemometer	
Atmospheric instrumentation	
Water vapour content origin	
Surface reflectance instrumentation	
F	Each hour
Frequency of measurements	Each nour

Site instrumentation Meteorological instrumentation Meteo station (Temperature, pressure, humidity) Pluviometer Anemometer Atmospheric instrumentation

Surface reflectance instrumentation

Page 6 of 10

VEGA Technologies SAS Copyright © 2008 VEGA Group PLC

ology ions | Proven Delivery

Page 8 of 11

VEGA Technologies SAS Copyright © 2008 VEGA Group PLC

Calibration test site selection and characterisation

CALIB-LES-WP210-VEGA-001

Calibration test site selection and characterisation

CALIB-WES-WP210-VEGA-001

Measureme	ent accuracy
Aerosol optical thickness	
Nominal values of AOT at 450, 550, 650, 850 nm	
Absolute error of AOT at 450, 550, 650, 850 nm	
Model of aerosol used	
Granulometry	
Refraction index used	
Water vapour content	
Mean and accuracy	
Reflectance	
Mean reflectance at Nadir at 450, 550, 650, 850 nm	
Δρ at 450 nm, 550, 650, 850 nm	
BRDF correction	
Relative error on BRDF correction at 0s=45 degrees,0v=30 degrees	

Measurement accuracy		
Aerosol optical thickness		
Minimum values of AOT at 450, 550, 650, 850 nm		
Absolute error of AOT at 450, 550, 650, 850 nm		
Model of aerosol used		
Granulometry		
Refraction index used		
Water vapour content		
Mean and accuracy		
Reflectance		
Mean reflectance at Nadir at 450, 550, 650, 850 nm		
Δρ at 450 nm, 550, 650, 850 nm		
BRDF correction		
Relative error on BRDF correction at and ev=30 degrees		

LES

WES

Site usage Historical record of comparisons (ground, alrcraft and satell Date / sensor / location of results Regularity of satellite data (if known) Satellite and sensor ID	ite)	aircraft and se Dates / senso	ors / location of results satellite data (if known)	
Date / sensor / location of results Regularity of satellite data (if known)	(e)	aircraft and so Dates / senso Regularity of	atellite) prs / location of results satellite data (if known)	
		Regularity of	satellite data (if known)	
		Satellite and t	sensor ID	
Satellite and sensor ID				
			References	
Contact inform	ation	Bibliography	,	
Instrumentation maintenance		Chara	acterization of the site	
		Descr	ription of the methodology	
Dataset availability a	and owner	Descr	ription of the instrumentation	
Dataset Owner	Availability	Descr	ription of applications for vicarious cal	ibration
		Site Web		

Instrumented Sites over land

- La Crau
- Amburla
- Dunrobin
- Winton
- Warrabin
- Tinga Tingana
- Lake Frome
- Barreal Blanco
- Sechura Desert
- Bonneville Salt Flats
- Brookings SD 3M
- Dunhuang
- Frenchman Flats
- Negev
- Railroad Valley Playa
- Ivanpah Playa
- Rogers Dry Lake
- Lunar Lake Playa
- White Sands
- Sonoran Desert
- Tuz gulu
- Uyuni Salt Flats

All questionnaires have been pre-filled thanks to :

- USGS cal/val portal,
- CEOS
- K. Thome
- Dr. Karnieli
- Selime Gurol
- M. Bouvet
- M. Helmlinger, C. Bruegge
- M. Schaepman
- D. Smith
- D. Six
- A. Meygret
- D. Aaron
- publications, web site data

Missing information:

- Site instrumentation description
 - Measurement accuracy
- **Consulting and Technology**

Technical Excellence | Pragmatic Solutions | Proven Delivery

Instrumented Sites over Sea

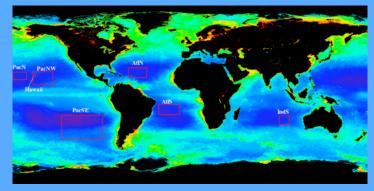
 MOBY BOUSSOLE Venise 	All questionnaires have been pre-filled by R. Santer With the collaboration of G. Zibordi D. Antoine S. Flora

Questionnaires

Same initiative with

- Geometric site characterisation thanks to S. Saunier (GAEL)
- Microwave site characterisation thanks to R. Gray (BRIX)

Refer to Cal/val newsletter n°2 and cal/val portal to get the questionnaires


http://calvalportal.ceos.org/CalValPortal/showSitesInfo.do

Exploitation of questionnaires

Assessment of the adequacy of test sites for external calibration methods

- Classification according to methods
- Sites which minimize the sources of errors in the calibration process
 - Spatial uniformity
 - Temporal stability
 - Minimization of directional effects
 - Water vapour and Ozone variability
 - Aerosol content variability
 - Cloud coverage
 - **-**

- Appropriate criteria for geometric calibration activities discussed by S. Saunier
- EO and auxiliary data required to characterise the calibration sites
 - Analysis based on information received or free identified auxiliary data such as AERONET, NCEP
 - Use of the CalVal Portal in order to limit data delivery delay

Exploitation of questionnaires : Site characterisation and expected accuracy: Error budget

- For each method, and each site associated to it, we will first define the nominal conditions.
- We will then identify the different sources of error.
 - Error on the gaseous content.
 - Error on the aerosols. The Rayleigh is well known and well control through accurate surface pressure measurements.
 - Error on the surface.
- If the amplitude of the errors are known from the literature or from the exploitation of the questionnaires, we will used it. If not, the error analysis will be a sensitivity analysis.
 - Use 6S to evaluate the performances of the different scenario

