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”Z Introduction

B Multiple methods are required to provide accurate and
traceable radiometric and spectral calibration

® [ntercomparison between sensors
® Climate data records

m Discuss the use of the sun as a preflight calibration
source allowing sensor intercomparison

B Talk overview
® Solar calibration approaches
® Dominant error sources and uncertainties
® Summary and conclusions

B Discussion that follows omits numerous terms and
effects for the sake of simplicity
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“% Source-based radiometric calibration
Preflight and inflight calibration

require sources of known output
B Blackbodies in the thermal emissive

B Lamps and sphere sources in
reflective

m Cross-calibration requires moving
the sources from place to place
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©Z Radiometric calibration - solar-based

Sun provides a constant
source with identical spectral

output anywhere on the earth

B Not exactly the case at the
surface

B Sun can be used as a source
both preflight
and in flight
® Direct views on
ground and space

® Diffusers on orbit
® Feasible to use
diffusers on ground
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>~ Solar-based approaches - overview

Three basic approaches using sun as a source for

preflight calibration of sensors are discussed here
Direct view Solar diffuser Transfer to orbit
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"j\,‘g Solar approaches - Direct view
Direct solar view approach points the instrument at

the sun and collects transmitted solar irradiance
B [rradiance on the sensor [W/m2] depends on
® |Incident irradiance (sun angle and *
earth-sun distance effects)

® Atmospheric transmittance

Esensor = Tatm Esun
B Atmospheric transmittance
can be written in
terms of optical depth and
alrmass

_méam
E = TatmEsun = E e t

sensor sun
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-2 Solar approaches - direct view

Direct view used primarily to determine the solar
“constant” and determine atmospheric composition

Satellite-based measurements of
the solar irradiance versus time

Data have been forced to match
through intercomparisons
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©Z Solar approaches - Diffuser

Use of a solar diffuser allows sunlight to be used

as an extended source
B Sun can be well-approximated by a point source

B [maging systems require an extended source

B Analogous to using a spherical integrating
source with a lamp

B Radiance on the sensor [W/(m2 sr)]
depends on

® Atmospheric transmittance
® Incident solar irradiance ‘
® Panel reflectance
Esky Plitfuser \/

T —
B There is also a skylight term that /\
IS present

L = 1:diffuser_BRDF (Hsun )Tatm Esun COSHsun +

sensor
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-~ Diffuser approach and skylight

Skylight can be removed by shadowing system
and differencing diffuse and global
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©Z Diffuser approach and skylight

Diffuse light can be ignored by characterizing the
total energy from the diffuser using calibrated
radiometers
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~'Z Solar Approaches — Transfer to Orbit

Sensors with on-board diffusers can be calibrated
relative to the solar beam preflight

B First done for
SeaWiFS

m Approach is identical
to diffuser approach

® Know conversion to
radiance

® System output is
converted to that
expected on orbit
after correction for
atmosphere
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"'Z Solar Approaches - Traceability

Intercomparison between sensors requires

traceable approaches and known uncertainties
n has traceability (to NIST) via the
solar model that is chosen

® Standards of spectral irradiance
® Electrical substitution radiometers
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'™ Uncertainties - Direct solar

v

Errors are dominated by solar model and
transmittance knowledge

B Errors from airmass (solar angle) uncertainty are minimal
® Keep solar zenith angles <60 degrees
® Know time to better than 1 second

B Solar model leads to an absolute error but can be
cancelled in comparisons between sensors

B Transmittance error is both in precision and “absolute”

® Instrument variations typically an order of magnitude
smaller than atmospheric changes

® Solar radiometer can be calibrated to better than 0.3%

® Two solar radiometers calibrated under similar
conditions agree to better than 0.005 in optical depth

® Differences are 0.01 to 0.02 in optical depth between
two independent radiometers (<2% in transmittance)
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=2 Uncertainties — Direct Solar

Not discussed at this point is that the transmittance

IS measured as a function of wavlength
B Rely on a aerosol model to 15 Ignored due to probable

convert from multispectral %5%\ | \ m&lﬂtrgl%nt)tlca"braﬂon
to hyperspectral o v

m Optical depth uncertainties \\\\
lead to errors in aerosol a2?
model %

m Pathological case of optical — 3 N—
depth error of -0.02 at 450 nm -
and +001 at 850 nm -3-5-1.2 -1 -0.8 -0.6 -04 -0.2 0 0.2

® Largest errors in transmittance In(Wavelength)

® -5% at longest wavelengths in SWIR and 5% at 350 nm

m Random error gives 2% transmittance error at shortest wavelength
and 1% error opposite sign at longest
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Uncertainties — Diffuser approaches

Errors are same as for direct solar approach with
added uncertainty from reflectance characerization

B Errors in measuring reflectance of diffuser panels can approach a
1% uncertainty (all errors are 1)

B Minimal errors caused by knowledge of
® View direction
® [ncident direction

m Combine reflectance uncertainty

m direct solar irradiance uncertainty
® Ever popular root-sum-square _
® 2.2% at wavelengths in the bluef

® 1.4% in the SWIR
B Assumes diffuse-light effects
and forward scatter are correcte




D

-~ Uncertainties — Diffuser approaches

Uncertainties have been “verified” through multiple
calibrations of UofA transfer radiometers

B Errors are shown relative to
average

B |Largest uncertainties in the blue
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"' Uncertainties — Direct characterization

Measure the at-sensor radiance using a well-

calibrated radiometr
B Transfer radiometer uncertainties are <2% in the VNIR
B Larger uncertainties in SWIR
m Additional error caused »so! _ _
by interpolating from TUNIR Tranorer Radior: A
tranSfer radlometer 200- SWIR Transfer Radiometer
bands -
B Need to account for
atmospheric variations 1ood
B Proper selection of

N
spectral bands limits V \i |‘ f»
errors 0 | r \ Mg

B May not be better to 350 . Wavif:nomh (nm)1850 2350
use hyperspectral sensor

adiance
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-2 Transfer to orbit

Transfer-to-orbit uncertainties will be similar In
value to those of the direct solar

B Method is relative to the solar model

m Typical solar radiometer errors as described previously
lead to

® Optical depth errors are £0.02 at 450 nm and x0.01 at
850 nm

® 2% error at shortest wavelength
® 1% error opposite sign at longest wavelength

m Correlation is the biggest issue that requires further
study
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¢

-~ Inflight, Reflectance-based method

Modtran Model Fit to Observed Diffuse-to-Global Ratio
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=2 Conclusions

All methods described here are suitable with
absolute uncertainty <3%

m Errors largest at shortest wavelengths
® Atmospheric effects have largest uncertainties in blue

® Laboratory calibrations have largest uncertainties in
the blue (low lamp output)

B Absolute uncertainties are slightly larger than those in
the laboratory

® Direct characterization with transfer radiometers gives
only slightly larger errors

® Diffuser approaches require accurate diffuser
characterization

® Biggest advantage Is the sun shines brightly the same
everywhere (at least that’s the conclusion from
Arizona)



