

USGS Report to the CEOS WGCV 36 May 13 – 17, 2013 Shanghai, China Greg Stensaas – USGS

U.S. Department of the Interior

U.S. Geological Survey

LDCM Successful Lunch!

Contributors:

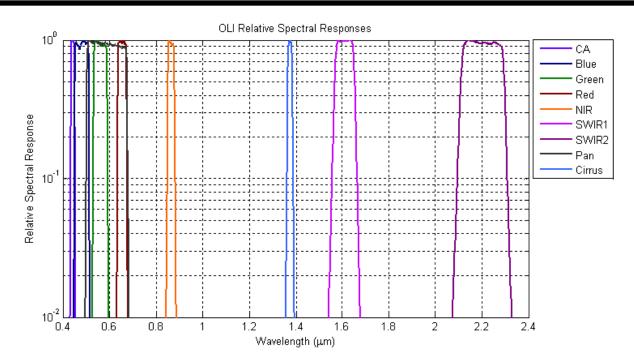
The slides in this presentation include contributions from a number of individuals in various organizations

- USGS/EROS LDCM Project
- NASA/GSFC LDCM Project
- Ball Aerospace & Technologies Corp (BATC, OLI builder)
- Orbital Sciences (LDCM spacecraft builder)

T-10 LDCM Launch Video

LDCM Launch Highlight Video Courtesy of ULA -<u>http://www.ulalaunch.com/site/</u> pages/News.shtml#/129/

LDCM Spectral Bands


Landsat-7 Bands			LDCM Band Requirements				
			30 m Coastal/Aerosol	0.433 - 0.453 (2)	Band 1		
Band 1	30 m Blue	0.450 - 0.515	30 m Blue	0.450 - 0.515	Band 2		
Band 2	30 m Green	0.525 - 0.605	30 m Green	0.525 - 0.600	Band 3		
Band 3	30 m Red	0.630 - 0.690	30 m Red	0.630 - 0.680	Band 4		
Band 4	30 m Near-IR	0.775 - 0.900	30 m Near-IR	0.845 - 0.885 (3)	Band 5		
Band 5	30 m SWIR-1	1.550 - 1.750	30 m SWIR-1	1.560 - 1.660 (3)	Band 6		
Band 6	60 m LWIR	10.00 - 12.50	120 m Thermal 1	10.30 – 11.30 (5)	Band 10		
			120 m Thermal 2	11.50 – 12.50 (5)	Band 11		
Band 7	30 m SWIR-2	2.090 - 2.350	30 m SWIR-2	2.100 - 2.300 (3)	Band 7		
Band 8	15 m Pan	0.520 - 0.900	15 m Pan	0.500 - 0.680 (4)	Band 8		
			30 m Cirrus	1.360 - 1.390 (1)	Band 9		

Explanation of Differences

- 1) Cirrus Band added in 2001 to detect cirrus contamination in other channels
- 2) Coastal Band added in 2001 at request of ocean color investigators requiring higher resolution of coastal waters relative to MODIS and SEAWifs
- 3) Bandwidth refinements made in all bands to avoid atmospheric absorption features
- 4) Panchromatic band narrowed to avoid crossing vegetation reflectance transition
- 5) Split-Window for atmospheric correction, actual pixel size ~100 meters

OLI Spectral Performance

Spectral Performance

Relative Spectral Responses have desired sharp bandpasses

4

- Out-of-Band Response typically below 10⁻⁴
- **Only 4 pixels** have anomalous response (high Out-of-Band response in red)
- Uniformity very good

From BATC

LDCM Science Improvements

• More image data –

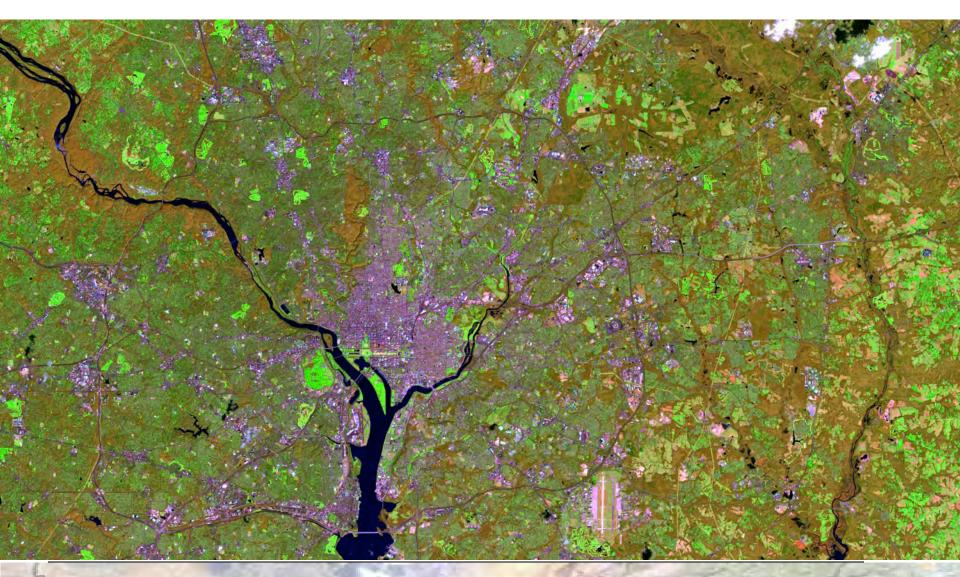
- ◆ 40 year record is extended to 45-50 years, or more
- 60% more coverage 400 scenes/day vs. 250 scenes/day with L7
- ♦ 100% of data collected goes to the US archive each day vs. ~40% with L7
- Better image data provides greater sensitivity to detect changes in surface properties
 - 5x improvement in signal to noise ratios (SNR)
 - 12 bit quantization (256 vs 4096)
 - Improved cartographic accuracy due to advanced L8 geo-location capabilities
- New measurements and new applications
 - Coastal aerosol band (0.433–0.453 µm) detection of water column constituents (e.g., chlorophyll, suspended materials)
 - Cirrus band (1.360–1.390 µm) improves overall image quality because of better cloud screening
 - Additional thermal band improves accuracy and precision of temperature measurements

March 18 – First day of Simultaneous OLI & TIRS Earth imaging

True Color: OLI Bands 4, 3, 2

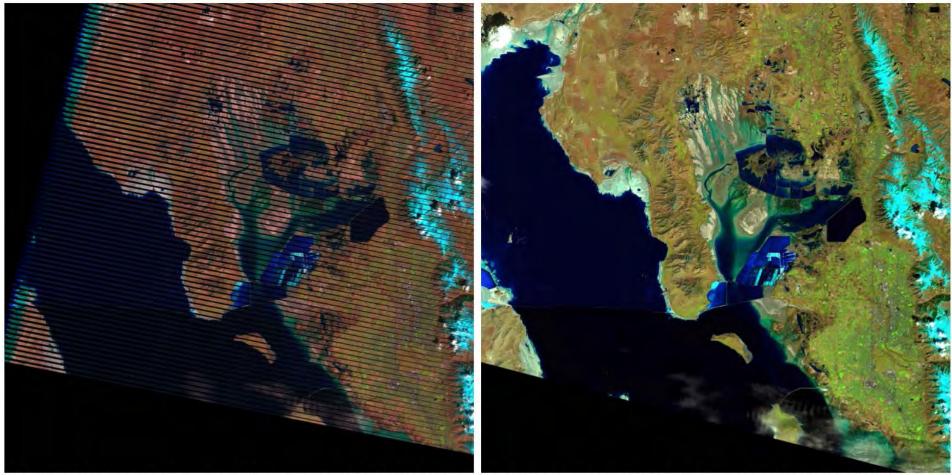
Path 33 / Row 32 Front Range of the Rockies in CO & WY

FIRS Band 10


Boulder, CO: March 18, 2013

http://landsat.usgs.gov/

LDCM of Greenbelt/D.C. Area



LDCM of Vandenberg Air force Base

Underfly of Landsat 7 – March 29, 2013

These images show a portion of the Great Salt Lake, Utah as seen by Landsat 7 (left), and LDCM/ Landsat 8 satellites (right). Both images were acquired on March 29, 2013.

http://landsat.usgs.gov/LDCM_Underfly_with_Landsat_7.php

USGS

Tandem Collection (LDCM and L7)

- Tandem collections of western US by OLI and ETM+ allowed for cross-comparison of the two
- Joint campaign between Univ. of Arizona and GSFC
 - Jeff Czapla-Myers lead UofA investigator with help from Nik Anderson
 - Joel McCorkel lead GSFC investigator with help from Jason Hair, Don Jennings, and Kurt Thome

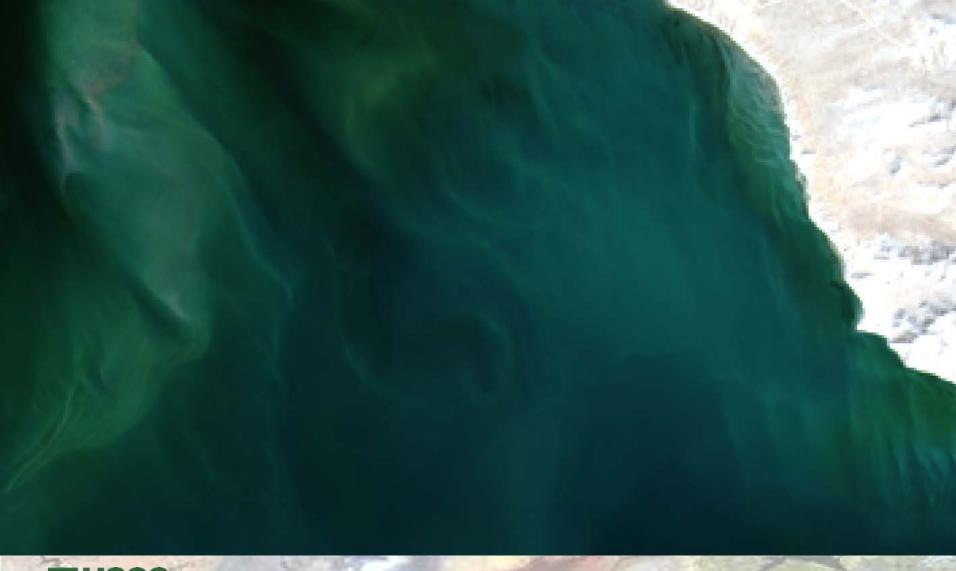
Test sites collected were Ivanpah and Railroad Valley

Reflectance-based approach used by both groups

- Field spectrometer measurements referenced to white panel
- Atmospheric measurements for atmospheric correction

Ground Field Campaign

Atmospheric measurements collected coincident with sensor overpasses



L7 ETM+ Natural Color (3,2,1)

LDCM OLI Natural Color (4,3,2)

L7 ETM+ Natural Color

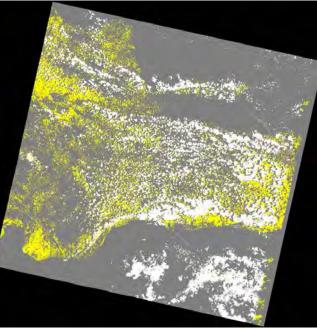
LDCM OLI Natural Color

First OLI Lunar Images Pan Band

LDCM Standard Level-1T Products

- LDCM standard Level-1 data products will be consistent with heritage Landsat product specifications.
- OLI and TIRS data will be co-registered via a ground control library to provide a common geodetic reference base and distributed as a combined product
- Browse imagery (full- and reduced-resolution) is generated from Level 1 data
- Metadata will include gain and offsets to convert OLI and TIRS data to at-sensor radiance, and to convert OLI data to at-sensor reflectance
 - Pixel size: 15m/30m/30m
 - Media type:
 - Product type: Level-1T (precision, terrain correction)
 - Output format: GeoTIFF
 - Map projection: UTM (Polar Stereographic for Antarctica)
 - Datum:
 - Orientation:
 - Resampling:
 - Accuracy:

- - **WGS84**


FTP

- North up
- Cubic convolution
- OLI 12m circular error, 90% confidence
 - TIRS 41m circular error, 90% confidence

Quality Assessment Band A file that contains quality statistics from the image data and cloud mask for the scene

Bit	Description	Bit	Description	Bit	Description	A STOC
0	Designated Fill	8	Vegetation	0	Designated	
1	Dropped Frame	9	Confidence	1	Dropped Frame	
2	Terrain Occlusion	10	Snow/Ice	2	Terrain Occlusion	
3	Artifact (Reserved)	11	Confidence	3	Water**	
4	Water	12	Cirrus	4	Vegetation**	and and
5	Confidence	13	Confidence	5	Snow/Ice**	C . € C . K
6	Cloud Shadow	14	Cloud	6	Cirrus**	All Age
7	(reserved)	15	Confidence	7	Cloud**	

• 16-bit QB rolls off of the Online Cache with the L1 Product

• 8-bit QB available with the Full Resolution Browse At-launch bits

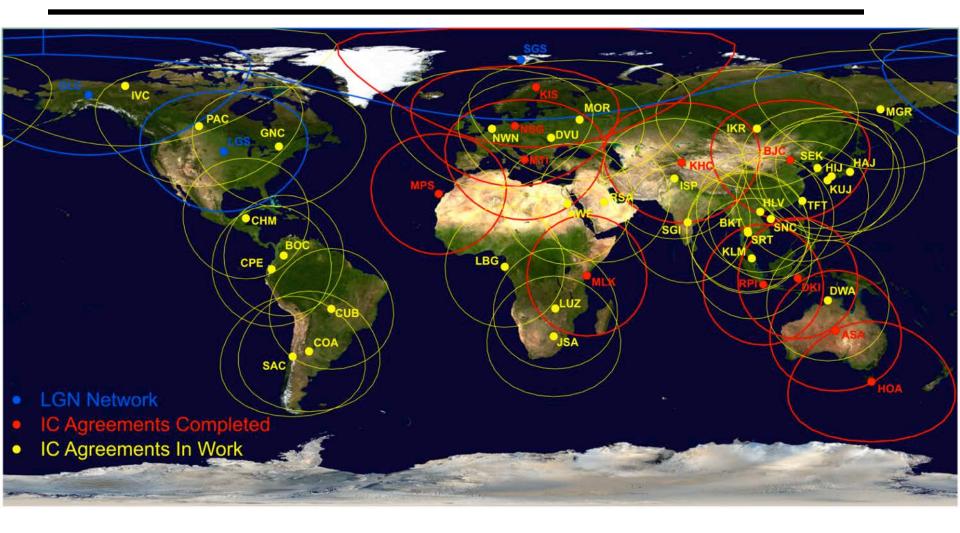
Confidence Levels

00 = none or unset

01 = 0.33% confidence

10 = 34-66% confidence

11 = 67-100% confidence


**- Set for highest Confidence Level (11)

Quality Assessment Band (8-bit)

- The QB looks like any other band file and is a 16-bit image with the same dimensions as the L1T scene.
- The bits are assigned to various processing artifacts that are identified in the L1 processing.

Potential LDCM International Cooperators

LDCM Milestones

http://landsat.usgs.gov/

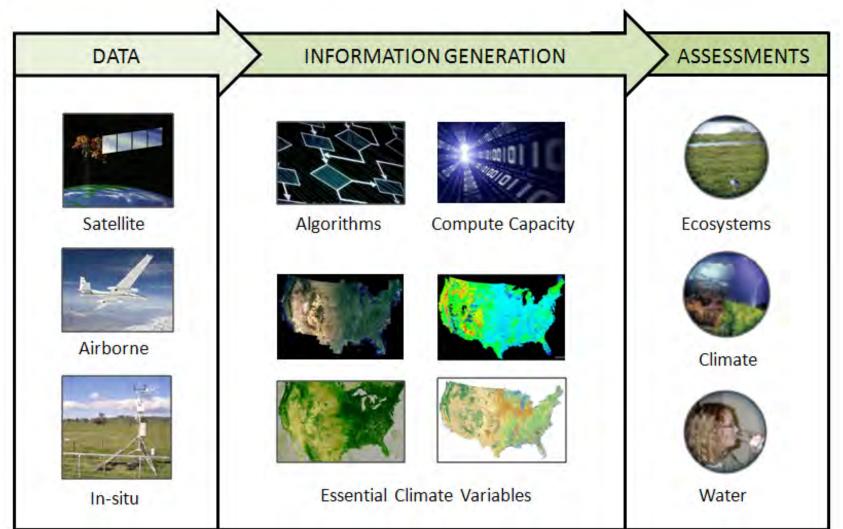
http://www.nasa.gov/landsat

LDCM Launch	February 11		
 First Light Images 	March 18		
 Underfly of Landsat 7 	March 29-30		
• LDCM on WRS-2	April 14		
 On-orbit Acceptance Review @ GSFC 	May 14		
 Post-Launch Assessment Review @ EROS 	May 29		
 Mission Transition Review @ EROS 	May 30		
 LDCM renamed Landsat 8 			
• Full Release of Landsat 8 Data Products!	May 30		

LDCM Summary

• Successful Launch!

- The sample data is now available: http://landsat.usgs.gov/
- All the LDCM data will be released on May 30, 2013
- Standard Level-1T products will be spatially and geometrically consistent with historical Landsat data
- In-flight performance monitoring will ensure maintenance of instrument calibration
- Sign-up for the Landsat newsletter to get timely information and updates <u>http://landsat.usgs.gov/about_Landsat_Updates.php</u>



Global Climate Observing System

Domain	Subdomain	Essential Climate Variable		
Atmospheric (over land, sea	Surface	Air temperature, Precipitation, Air pressure, Surface radiation budget, Wind speed/direction, Water vapour		
and ice)	Upper Air	Earth radiation budget, Upper-air temperature, Wind speed and direction, Water vapour, Cloud properties.		
	Composition	Carbon dioxide, Methane, Ozone, Other long-lived long lived greenhouse gases, Aerosol properties		
Oceanic	Surface	Sea-surface temperature, Sea-surface salinity, Sea level, Sea state, Sea ice, Current, Ocean color, Carbon dioxide partial pressure.		
	Subsurface	Temperature, Salinity, Current, Nutrients, Carbon, Ocean tracers, Phytoplankton.		
Terrestrial	River discharge, Water use, Ground water, Lakes, Snow cover, Glaciers and ice caps, Permafrost and seasonally-frozen ground, Albedo, Land cover (including vegetation type), Fraction of absorbed photosynthetically active radiation (fAPAR), Leaf area index (LAI), Above ground biomass, Fire disturbance, Soil moisture, Soil carbon, Ice sheets.			

Conceptual Framework

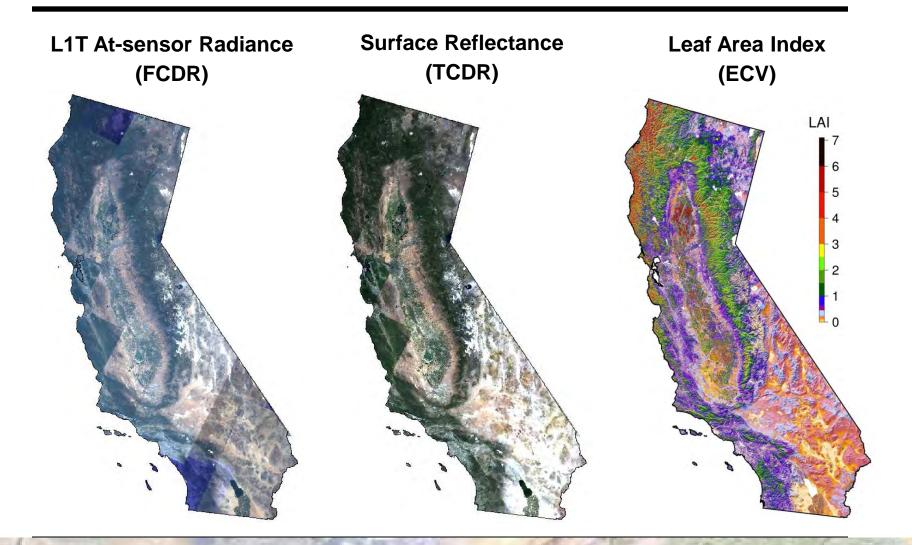
USGS CDR & ECV Development

- Climate Data Records (CDRs)
 - Surface Reflectance (NASA GSFC/USGS EROS)
 - Surface Temperature (NASA GSFC/USGS EROS/RIT/JPL)
- Essential Climate Variables (ECVs)
 - Global 30m Land Cover (Chandra Giri/EROS)
 - Burned Area (Susan Stitt & Todd Hawbaker/GESC)
 - Snow Covered Area (Dave Selkowitz/AGSC)
 - Surface Water Extent (John Jones/EGSC, Mike Starbuck/EROS)
 - Leaf Area Index Validation (Carol Mladinich/GESC)
 - Above Ground Biomass (Dennis Dye/WGSC, Jason Stoker/EROS)

Prescriptive Levels of Processing

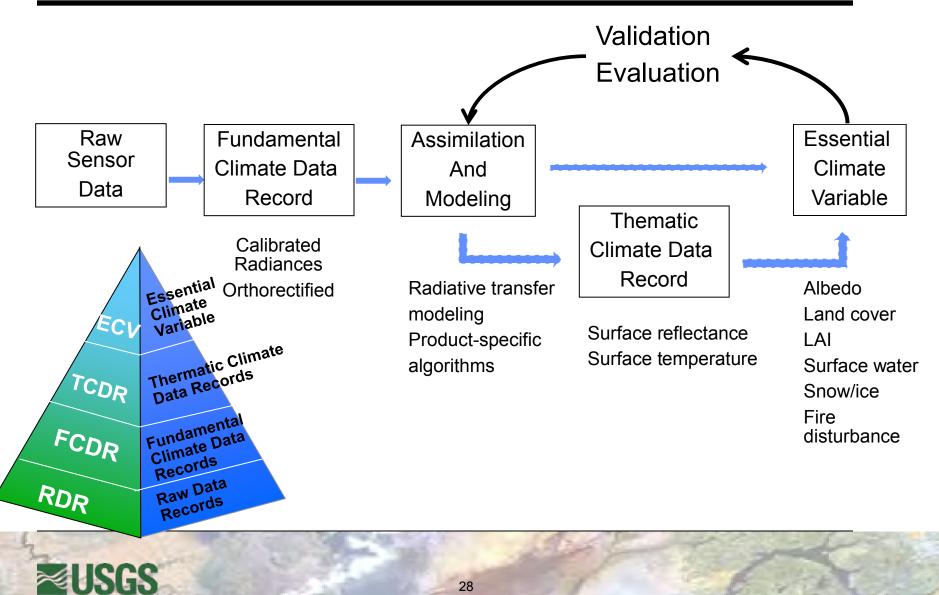
Provide users with the product most suitable to their needs

Scaled DNs


TOA Reflectance

Surface Reflectance

On-demand surface reflectance products will be available through Earth Explorer http://earthexplorer.usgs.gov



Moving from Data to Information

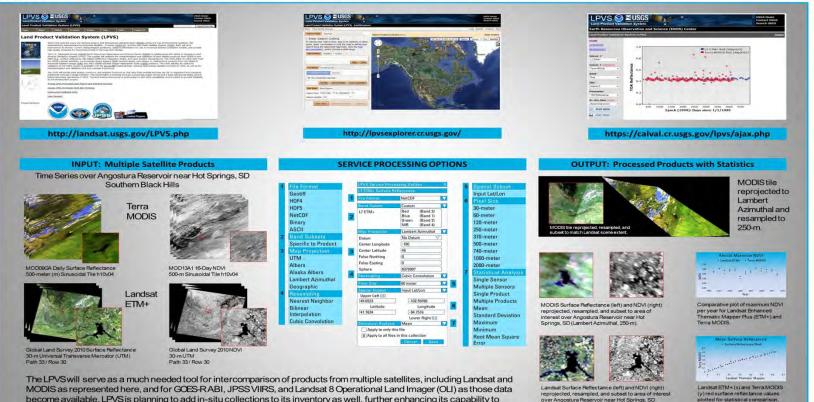
Operationally Processing Data Into Information

A Land Product Validation System (LPVS) for enhanced data access, retrieval, and analysis of satellite land data products

Kevin Gallo¹, Calli Jenkerson², Greg Stensaas³, Gyanesh Chander², John Dwyer³, and Ryan Longhenry³

provide data stacks and statistics from a single system for comparative analyses. Please visit the Web interfaces mentioned

above for additional information and direct access to the LPVS.


¹National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) visiting scientist at U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 U.S.A.

²Technical Support Services Contract at USGS EROS Center, Sioux Falls, SD 57198 U.S.A.

³USGS EROS Center, Sioux Falls, SD 57198 U.S.A.

The National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center are collaborating on the development of a Land Product Validation System (LPVS) that will facilitate the application of multi-satellite and in-situ data for characterization and validation of land products (e.g., surface reflectance, normalized difference vegetation index (NDVI), and land surface temperature) derived from satellite sensors. Developed for evaluation of Geostationary Operational Environmental Satellite – R Series (GOES-R) and Joint Polar Satellite System (JPSS) products, LPVS will provide capabilities for cross-comparisons between multiple data sets. Data and products from satellites such as the USGS Landsat 8, the European Space Agency (ESA) Sentinel series of satellites, and other moderate to high spatial resolution sensors, will be added to LPVS when available.

The LPVS includes data inventory, access, and analysis functions that will allow data from multiple archive facilities to be easily identified, retrieved, co-registered, and compared statistically through a single interface. This functionality is evolving through a recently completed prototype phase (September 2012) towards a beta operational phase (September 2013) that will transition to full operations in late 2014.

(Lambert Azimuthal, 250-m)

incartioners of termino

Remote Sensing Technologies

Remote Sensing Technologies

understanding the technologies needed to sense our world

Home	Instrumentation and Infrastructure	Digital Aerial	Optical Science Lab	Satellite	Collaborations	About Us	Sitemap
------	------------------------------------	----------------	---------------------	-----------	----------------	----------	---------

Joint Agency Commercial Imagery Evaluation (JACIE)

The growing number of commercial sources for mendely sensed data offers users more choices than ever before. The key to using data from these new sources is understanding their characteristics and capabilities, and the quality of the data they produce.

The Joint Agency Commercial imagery Evaluation (JACIE) program was formed to leverage Federal agencies' resources for the characterization of commercial remote sensing data and to share those results across the Federal Government and beyond. Consisting of representatives from the U.S. Geological Survey (USGS), the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA), and the U.S. Department of Agriculture (USDA), the JACIE team performs product analysis of commercial and other remote sensing data and information products, providing earth scientists and other users with awareness and independent verification of commercial imagery data quality.

CONTRACT Conference Search

The JACIE team provides independent characterizations of delivered image and image-derived end products. Each team member agency brings their resources and strengths to this task, providing Federal users in-depth assessments of commercial imagery quality. JACIE team efforts have deen instrumental in several improvements to commercial image product quality and have enhanced working relationships between government and the commercial remote sensing industry.

Results of JACIE evaluations are presented at the annual JACIE Civil Commercial Imagery Evaluation Workshop.

JACIE 2012

Proceedings From Previous JACIE Workshops

- November 8-10, 2004
- March 14-16, 2006
- March 20-22, 2007
- March 25-27, 2008
- March 31 April 2, 2009
- March 16 18, 2010
- March 29 31, 2011

JACIE Civil Commercial Imagery Evaluation Workshop: <u>http://calval.cr.usgs.gov/jacie/</u>

Search

March 23-27, 2014, Louisville, Kentucky

- April 16-18, 2013, St. Louis, Missouri
- April 17 19, 2012, Fairfax, Virginia

RECENT NEWS

- USGS National Test Ranges
- JACIE 2012
- RST Project supports global quality standards for earth observation data
- IEEE TGRS Special issue on "Inter-Calibration of Satellite Instruments"
- USGS Announces "No USGS Digital Camera Certification Requirement"
- USGS Will Continue to Provide Film Camera Calibration Services
- USGS RST ASPRS 2010 Paper Featured by GISCafe
- Joint Agency Commercial imagery Evaluation (JACIE) Workshop Agenda
- Successful GSICS Working Group Meeting In Daeleon, South Korea
- 15th Annual NASA LCLUC Science Team Meeting

BROWSEARCHIVES			
January 2012			
BROWSECATEGORIES			
About Us			
Aerial			
Hignlights			
JACIE			
News			
Reports			
Satellite			

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey URL: Remote Sensing Technology Page Contact Information: styles.gov Page Last Modified: January 22, 2012

IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING

A PUBLICATION OF THE IEEE GEOSCIENCE AND REMOTE SENSING SOCIETY

MARCH 2013 VOLUME 51 PART I OF TWO PARTS

51 NUMBER 3

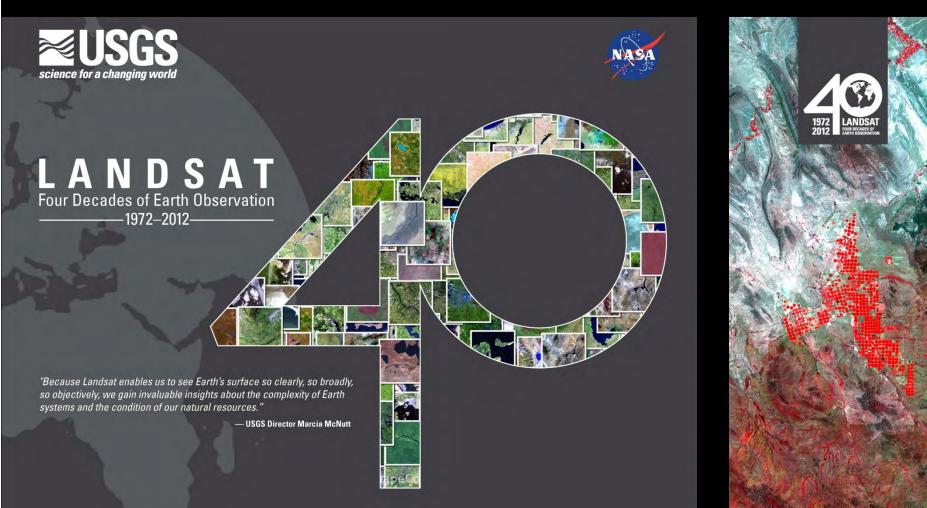
IGRSD2

ISSN 0196-2892)

(Top and bottom corner) Symbolic global network of Earth observing satellites connected by intercalibration and schematic illustration of the GEO and polar LEO satellites and distribution of their collocated observations. (Left column and bottom row) Examples of natural targets used as calibration references.

•This special issue focuses on how intercalibration and comparison between sensors can provide an effective and convenient means of verifying their postlaunch performance and correcting their measurement differences

•The papers contained within this special issue include topics that explore PICS, SNO and other ray-matching comparisons, lunar and stellar observations, DCC, LWC, Rayleigh scattering, and sunglint


•The goal of this special issue is to capture the state-of-the-art methodologies and results from intercalibration of satellite instruments, including full end-to-end uncertainty analysis

•There are 40 papers published in this issue. You'll see a number of contributions from the GSICS and CEOS community. Several of these are being published with Open Access, so you can download them freely!

•This 500-page special issue will become a reference anthology for the remote sensing community

Available online through the IEEE Xplore website at http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6469257&punumber=36

FFF

"EROS - Celebrating the Past, Looking to the Future "40 Years of Service to the Planet" - August 9, 2013

Mexico Irrigation Landsat 5 August 3, 2010

Summary & USGS Key Involvement

- USGS has extensive internal capabilities and leads a number of national and international calibration partnership and activities
- Lead a number of GEOSS Quality Assurance Strategy sub-tasks
- Continuing Landsat Cross-calibration Activities
 - On-going Cross-calibration Activities:
 - IRS-P6 AWiFS/LISS-III, CBERS-2/B CCD, ALOS AVNIR-2, UK DMC-1/2, RapidEye Constellation, SPOT, Worldview, MODIS, ALI, THEOS MS sensors
 - Planned Cross-calibration Activities
 - Landsat TM/ETM+ with: LDCM, Sentinel, ENVISAT MERIS, AVHRR MetOP, Cartosat-2, ResourceSat-2, CBERS-3, etc.
- Landsat archive and open data policy has enabled growth and innovation in use and applications of land remote sensing data
- Land Information products are way of the future
 - Land Product Validation becoming more important
- Working to establish an operational Landsat program

