ISRO Agency Report

Indian CAL-VAL Activities
- Present and Future

A. Senthil Kumar (ISRO-NRSC)
A.K. Shukla (ISRO-SAC)
Rajeev Jaiswal (ISRO-HQ)

Feb. 20, 2014
Frascati, Italy
WGCV – 37 Meeting
Indian Earth Observation Satellites

- One of the largest constellations
- Provides remote sensing data in a variety of spatial, spectral and temporal resolutions
- Both Optical and Microwave

2009
- RISAT-2
 - X-SAR

2012
- RISAT-1
 - C-SAR

2011
- RESOURCESAT-2
 - LISS 3; LISS 4; AWiFS

2003
- RESOURCESAT-1
 - LISS 3; LISS 4; AWiFS

2008
- IMS-1
 - MX-T; HySI

2005
- CARTOSAT-1
 - Stereo PAN, F/A

2007/2008/2010
- CARTOSAT-2/2A/2B
 - PAN

2001
- Step & Stare PAN

2013
- INSAT-3D
 - IMAGER, SOUNDER

2013
- SARAL
 - ALTIKA, ARGOS

2011
- Megha-Tropiques
 - MADRAS, SAPHIR, SCaRaB

2009
- OCEANSAT-2
 - OCM, SCAT ROSA

2003
- INSAT-3A
 - VHRR, CCD

2002
- KALPANA-1
 - VHRR
Resourcesat-2 (2011)

- LISS-4 MX camera: 5.8m Resolution and 70 Km swath
- LISS-3: 23.5m Resolution and 141 Km Swath
- AWiFS: 56m Resolution and 740km Swath
- Repetitivity: 5 days (AWiFS) to 24 days (LISS 3) &
- Revisit: 5 days (LISS 4) with tilting 26 deg tilt

<table>
<thead>
<tr>
<th>SENSORS</th>
<th>SPECTRAL BANDS</th>
<th>Ground Res. (m)</th>
<th>Swath (km)</th>
<th>Rad. Res. (bits)</th>
<th>Revisit cycle (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISS III</td>
<td>B2 B3 B4 B5</td>
<td>23.5</td>
<td>141</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>VNIR/SWIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LISS-IV MX</td>
<td>B2 B3 B4</td>
<td>5.8</td>
<td>70</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>VNIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWiFS</td>
<td>B2 B3 B4 B5</td>
<td>56</td>
<td>740</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>VNIR/SWIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Major Objectives
- To provide continuity of on-going services of Resourcesat-2 and ensure in-orbit redundancy of the satellite
- Increased frequency of observations in tandem with Resourcesat-2 during overlap period
- To explore newer application areas in Land and Water Resources monitoring & management

<table>
<thead>
<tr>
<th>SENSORS</th>
<th>SPECTRAL BANDS</th>
<th>Ground Resolution (meters)</th>
<th>Swath (km)</th>
<th>Radiometric Resolution (bits)</th>
<th>Revisit Cycle (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISS III VNIR/SWIR</td>
<td>B2 B3 B4 B5</td>
<td>23.5</td>
<td>141</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>LISS-IV MX VNIR</td>
<td>B2 B3 B4</td>
<td>5.8</td>
<td>70</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>AWiFS VNIR/SWIR</td>
<td>B2 B3 B4 B5</td>
<td>56</td>
<td>740</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>
Cartosat-1 and 2 (2005, 2007)

Cartosat-1
- 2.5 m resolution, 30 km Swath
- Stereo mission; +26° / -5° forward/ Aft view
- Revisit: 5 days
- Along Track Stereo viewing - first of its kind in the world

Cartosat-2
- Swath (km): 10
- SNR: ≥ 180
- IGFOV (m): 0.8
- SWR (%): ≥ 10

Cartosat-2 Data Products - Handling of unique imaging modes
- *paint brush*
- *multi-view in step and stare*
- *spot scenes*
Panchromatic camera; 0.65 m
Multispectral: 2 m
No. of Bands: 4
Swath: 10 km
Radiometric Resolution: 11 bit
Steering up to ±26°
Altitude: 500 km
Solid State Recorder: 600 Gb
Local time: 0930 hrs
Revisit: 5 days

Major Objectives

- To provide continuity of on-going data services of Cartosat-2
- To design and develop a highly agile and advanced satellite with high spatial resolution both in panchromatic and multi-spectral bands
- To meet the increasing user demands for cartographic and cadastral level applications with improved revisit capability in tandem with Cartosat-2 missions.
Oceansat-2 (2009)

A global mission, providing continuity of ocean color data and wind vector in addition characterization of lower atmosphere and ionosphere from ROSA payload.

Global data acquisition of Ocean colour
- High Resolution Data - NRSC and INCOIS
- 1km resolution global products through NRSC Website
- Global Chlorophyll, Aerosol Optical Depth through NRSC Website
- Regional/Global NDVI, VF, Albedo products

Scatterometer Wind Products
- Reception Station at Svalbard
- Real time transfer and processing
- Uploading to Web within 3 hrs through EUMETCAST
- 1.72 Lakhs data are downloaded from NRSC Website

Data Dissemination Mechanism
- Established Ground station at INCOIS
- Ground station at Bharti, Antarctica is commissioned.
- EUMETCAST, NRSC Website for data and products
Global Vegetation Index Products from OCM sensor

OCT - 2013

Pixel Size: 8 km; Cycle: Monthly; Method: Max. Value Composite (to reduce cloud cover) CC>80% with MODIS NDVI
Microwave Digital Earth from OSCAT @2.5km pixel

• OSCAT scatterometer
• Temporal resolution 2 days.
• Operational frequency is 13.5 GHz.
• Originally developed to measure winds over the ocean from space,
• OSCAT data useful in a variety of Land studies including polar ice and tropical vegetation.

OSCT data draped on Google Earth
Date: Oct. 23-24, 2012

• NASA sponsored Scatterometer Climate Record Pathfinder at Brigham Young University (courtesy: David G. Long) by SIR algorithm available at 2.225km pixel.
• Datasets further processed for geometric rectification and mosaicking to realize a 3-D virtual reality land product at 2.5km after ocean regions are masked.
• Probably first microwave 2D-Digital Earth at this spatial/temporal resolutions available todate in public domain (nrsc website).
OCEANSAT-3 is a global mission and is configured to cover global oceans and provide continuity of ocean colour data with global wind vector and characterization of lower atmosphere and ionosphere.

Payloads:
- An 13-band Ocean Colour Monitor (OCM) in VNIR (400-1010 nm range) with 360 m spatial resolution and 1400 km swath for ocean Colour monitoring
- 2-band Long Wave Infra Red (LWIR) around 11 and 12 μm for Sea Surface Temperature (thermal channels) at 1080 m resolution.
- A Ku-Band Pencil beam SCATTEROMETER with a ground resolution of 50 km x 50 km for Continuity of wind vector data for cyclone forecasting and numerical weather modelling

Objectives:
- Continuity of ocean colour data with improvements to continue and enhance operational services like potential fishery zone and primary productivity.
- To enhance the applications by way of simultaneous Sea Surface Temperature (SST) measurements, in addition to chlorophyll, using additional thermal channels, is envisaged in this mission.
- Continuity of wind vector data through repeat of Scatterometer for cyclone forecasting and numerical weather modelling.
- The mission, in tandem with Oceansat-2 (on availability), will improve the repetivity of ocean colour measurements to every 24 hour and wind vector measurements to every 12 hour.

LAUNCH: 2016-17
Megha-Tropiques (Indo-French Mission: 2011)

For studying water cycle and energy exchanges to better understand the life cycles of the tropical convective system. The satellite is contributing to Global Precipitation Mission (GPM)

SAPHIR
- Water vapour profile
- Six atmospheric layers upto 12 km height
- 10 km Horizontal Resolution

SCARAB
- Outgoing fluxes at TOA
- 40 km Horizontal Resolution

MADRAS
- Precipitation and Cloud properties
- 89 & 157 GHz: Ice particles in cloud top
- 18 & 37 GHz: Cloud Liquid Water and precipitation; Sea Surface Wind speed
- 24 GHz: Integrated water vapour

Applications:
Observations of tropics for
- Water vapour
- Clouds
- Cloud condensed water
- Precipitation
- Evaporation
Space borne SAR in C-band at 5.35 GHz

- Stripmap FRS-1 / FRS-2 (Range Doppler/ Chirp Scaling)
- ScanSAR MRS & CRS (Range Doppler/Specan)
- Spotlight (modified sub-aperture) modes.

Single/ Dual / Quad Polarisation imaging with 3 - 50 m Resolution & 10 - 240 km Swath
Altika/SARAL mission belongs to the global altimetry system for the precise and accurate observations of ocean topography, circulation and sea surface monitoring.

Mission:
- Sun-synchronous, polar orbiting satellite
- Inclination: 98.38 Deg.
- Altitude: ~800 km
- Repeat cycle: 35 days

Altika Payload:
- Ka-band (35.75 GHz, BW 500 MHz) radar altimeter
- Dual-frequency microwave radiometer (23.8 & 37 GHz)
- DORIS
- Laser Retro-reflector Array

SARAL/AltiiKA SSHA observation overpass over Indian Ocean on Feb 28, 2013 and SLA from POM model at 0.5 degree resolution.
INSAT-3D (2013)

Follow Mission to Kalpana

Payloads:

IMAGER
- Spectral Bands (6): VIS, SWIR, MWIR, WV, TIR- 1 &2
- Spatial Resolution: 1 km for VIS & SWIR
 4 km for MIR & TIR
 8 km for WV

SOUNDER – Water Vapour & Temperature profiles
- Spectral Bands (19): SWIR (6), MWIR (5), LWIR (7), Vis (1)
- Resolution (km): 10 X 10 for all bands
- No of simultaneous sounding: 4 per band

Potential Applications

Quantitative precipitation estimation, vertical temperature and moisture profile of the atmosphere, surface and cloud top temperatures, ozone distribution, Sea Surface Temperature (SST), fire, smoke, fog detection, etc.
INSAT - 3DR

Advanced weather satellite of India configured with improved Imaging System and Atmospheric Sounder

LAUNCH: 2016

6 Channel IMAGER

- **Spectral Bands (µm)**
 - Visible: 0.55 - 0.75
 - Short Wave Infra Red: 1.55 - 1.70
 - Mid Wave Infra Red: 3.70 - 3.95
 - Water Vapour: 6.50 - 7.10
 - Thermal Infra Red – 1: 10.30 - 11.30
 - Thermal Infra Red – 2: 11.30 - 12.50

- **Resolution**: 1 km for Vis & SWIR
 4 km for MIR & TIR
 8 km for WV

19 Channel SOUNDER

- **Spectral Bands (µm)**
 - Short Wave Infra Red: Six bands
 - Mid Wave Infra Red: Five Bands
 - Long Wave Infra Red: Seven Bands
 - Visible: One Band

- **Resolution (km)**: 10 X 10 for all bands

- **No of simultaneous**: 4 sounding per band
Geo Imaging Satellite (GISAT)

- Multiple acquisition capability from a Geosynchronous Orbit
- Geostationary orbit of 36,000 km
- Every 30 minutes observation over India

LAUNCH: 2016-17

High resolution multi-spectral VNIR (HRMX-VNIR): 50m Resolution

Hyper spectral VNIR: 320m Resolution

Hyper spectral SWIR (HySI-SWIR): 192m Resolution

High resolution Multi-spectral (HRMX-TIR): 1.5km Resolution
Scenario in next 5 Years

Cartosat-2C
0.65 m PAN, 2 MX

MEGHA-TROPIQUES
SAPHIR, SCARAB & ROSA

RISAT-2
X-band

Oceansat-2
OCM, SCAT

Resourcesat – 2
LISS III, LISS IV, AWiFS

Oceansat-3
OCM, SCAT

RISAT-1
C-band

Resourcesat -2 A
LISS III, LISS IV, AWiFS

SARAL
Altika & Argos

GISAT
MX, Hyperspectral, Thermal

INSAT-3D Imager,
Sounder

INSAT-3DR Imager,
Sounder

Resourcesat – 2 A
LISS III, LISS IV, AWiFS

Oceansat-3
OCM, SCAT

Oceansat-2
OCM, SCAT, ROSA
ISRO Cal Val Activities - Overview

• Establishing an Indian Cal-Val Program - by setting up instrumented CAL sites for theme-oriented ISRO missions.

• Collaborating with WGCV teams for Inter-Sensor Calibration with contemporary sensors over CEOS specified global calibration sites.
Functional Activities of Indian Cal-Val Sites

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Name of site</th>
<th>Type</th>
<th>Project</th>
<th>Sensor</th>
<th>Parameters/products</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kavaratti</td>
<td>Ocean/Atmosphere</td>
<td>Oceansat-2, Saral/AltiKa, Meghatropiques</td>
<td>OCM-2, Scatterometer, Radar Altimeter, Madra Sapphire, ScaRaB</td>
<td>VC, nLw, Rsr, Chl, AOD, SSA, WV, TSM, Kd, WS, WD, Vertical profile of atmosphere, SSH, AP, AT, SST, Oz.</td>
</tr>
<tr>
<td>4</td>
<td>Bhopal</td>
<td>Land/Atmosphere</td>
<td>Resourcesat-2, Meghatropiques, INSAT-3D</td>
<td>AWIFS, LISS-3, Sapphire, ScaRaB, Madras, Imager, Sounder</td>
<td>LPV, SR, LAI, NDVI, AOD, SSA, WV, WS, WD, Vertical profile of atmosphere, AP, AT, WS, WD, Ozone</td>
</tr>
<tr>
<td>5</td>
<td>Krishna Godavari (KG)</td>
<td>Coastal ocean/Atmosphere</td>
<td>Oceansat-2, Saral/AltiKa, Meghatropiques, INSAT-3D</td>
<td>OCM-2, Scatterometer, Radar Altimeter, Sapphire, ScaRaB, Madras, Imager, Sounder</td>
<td>PV, nLw, Rsr, Chl, AOD, SSA, WV, TSM, Nitrate, Phosphate, BS, PAR, WS, WD, Vertical profile of atmosphere, SSH, AP, AT, SST</td>
</tr>
<tr>
<td>6</td>
<td>Machilipatnam</td>
<td>Coastal ocean</td>
<td>Saral/AltiKa</td>
<td>Radar Altimeter</td>
<td>SSH</td>
</tr>
<tr>
<td>Sr. No</td>
<td>Name of site</td>
<td>Type</td>
<td>Project</td>
<td>Sensor</td>
<td>Parameters/products</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>Kanya kumari</td>
<td>Coastal Ocean</td>
<td>Saral/AltiKa</td>
<td>Radar Altimeter</td>
<td>SSH</td>
</tr>
<tr>
<td>8</td>
<td>Nirma/MG Sci.</td>
<td>Land</td>
<td>RISAT-1</td>
<td>SAR</td>
<td>SAR cal., Soil Moisture</td>
</tr>
<tr>
<td>9</td>
<td>Roorkie</td>
<td>Land</td>
<td>RISAT-1</td>
<td>SAR</td>
<td>SAR cal., Soil Moisture</td>
</tr>
<tr>
<td>10</td>
<td>Chhota Shigri</td>
<td>Land/Atmosphere</td>
<td>Resourcesat-2, Meghatropiques, INSAT-3D</td>
<td>AWIFS,LISS-3, Sapphire, ScaRaB, Madras, Imager, Sounder</td>
<td>Snow cover, SR, AOD, SSA, WV, WS, WD, AP, AT, Ozone</td>
</tr>
<tr>
<td>11</td>
<td>Punjab (planned)</td>
<td>Land/Atmosphere</td>
<td>Resourcesat-2, Meghatropiques, INSAT-3D</td>
<td>AWIFS,LISS-3, Sapphire, ScaRaB, Madras, Imager, Sounder</td>
<td>LPV, SR, LAI, NDVI, AOD, SSA, WV, WS, WD, Vertical profile of atmosphere, AP, AT, Ozone</td>
</tr>
<tr>
<td>12</td>
<td>North East (planned)</td>
<td>Land/Atmosphere</td>
<td>Resourcesat-2, Meghatropiques, INSAT-3D</td>
<td>AWIFS,LISS-3, Sapphire, ScaRaB, Madras, Imager, Sounder</td>
<td>LPV, SR, LAI, NDVI, AOD, SSA, WV, WS, WD, Vertical profile of atmosphere, AP, AT, Ozone</td>
</tr>
<tr>
<td>13</td>
<td>Leh (planned)</td>
<td>Land/Atmosphere</td>
<td>Resourcesat-2, Meghatropiques, INSAT-3D</td>
<td>AWIFS,LISS-3, Sapphire, ScaRaB, Madras, Imager, Sounder</td>
<td>Instrument calibration, SR, AOD, SSA, WV, WS, WD, Vertical profile of atmosphere, AP, AT, Ozone</td>
</tr>
</tbody>
</table>
Activities carried out in 2013

• Development activities of Cal-Val sites in Rann of Kutch (medium and coarse resolution), SAC-Bopal, Ahmedabad (high resolution) and in Bhopal (Land Product Validation). The site consists of land and atmospheric fully automated in-situ parameter measuring instruments (e.g. surface reflectance, AOD, SSA, Rain fall/rate, weather para., etc.)

• Development initiated for a Coastal site in Krishna-Godavari basin.

• Vicarious calibration of OCM using Kavaratti Cal-Val site, Resourcesat-2 sensors using Rann of Kutch site and inter-comparison with Landsat-7, absolute calibration of Saral Radar altimeter of using Kavaratti site, RISAT-1 SAR calibration using Ahmedabad sites.

• Validation of OCM2, AWIFS, Saral, Meghatropiques, INSAT-3D products.
Future plan of action in 2014

• Operationalization of Rann-of-Kutch, SAC-Bopal and Bhopal sites
• Development and operationalization of Coastal site for ocean color
• Periodic vicarious calibration of ISRO sensors, implementation of gain coefficients and inter-comparison(other sensors) using sites
• Operational validation of Bio-geo-physical products using sites
• Feasibility studies and site selection for planned sites development
• Operationalization INCVSLOA and database for all sites
• International collaboration and data exchange for all sensors
RESOURCESAT-2/IRS-P6

Sensor / Band

<table>
<thead>
<tr>
<th>Sensor / Band</th>
<th>Radiance (mw/cm²/sr/micron)</th>
<th>S.D.</th>
<th>Ratio (RS2/6S)</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS2 green</td>
<td>7.85</td>
<td>0.16</td>
<td>0.91</td>
<td>0.17</td>
</tr>
<tr>
<td>6S green</td>
<td>8.57</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS2 red</td>
<td>7.72</td>
<td>0.19</td>
<td>0.94</td>
<td>0.11</td>
</tr>
<tr>
<td>6S red</td>
<td>8.19</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS2 NIR</td>
<td>5.87</td>
<td>0.14</td>
<td>0.92</td>
<td>0.09</td>
</tr>
<tr>
<td>6S NIR</td>
<td>6.34</td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS2 SWIR</td>
<td>1.40</td>
<td>0.03</td>
<td>0.84</td>
<td>0.02</td>
</tr>
<tr>
<td>6S SWIR</td>
<td>1.67</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensor / IRS-P6

<table>
<thead>
<tr>
<th>Sensor / Band</th>
<th>Radiance (mw/cm²/sr/micron)</th>
<th>S.D.</th>
<th>Ratio (P6/6S)</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6 green</td>
<td>6.75</td>
<td>0.14</td>
<td>0.76</td>
<td>0.16</td>
</tr>
<tr>
<td>6S green</td>
<td>8.87</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6 red</td>
<td>8.21</td>
<td>0.21</td>
<td>0.99</td>
<td>0.19</td>
</tr>
<tr>
<td>6S red</td>
<td>8.33</td>
<td>0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6 NIR</td>
<td>5.96</td>
<td>0.13</td>
<td>0.92</td>
<td>0.13</td>
</tr>
<tr>
<td>6S NIR</td>
<td>6.47</td>
<td>0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6 SWIR</td>
<td>2.24</td>
<td>0.04</td>
<td>1.34</td>
<td>0.04</td>
</tr>
<tr>
<td>6S SWIR</td>
<td>1.67</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RS 2 AWIFS

- Equation: \(y = 1.0644x + 0.1282 \)
- \(R^2 = 0.9708 \)
- 6s Radiance
- Linear (6s Radiance)

P6 AWIFS

- Equation: \(y = 1.1605x - 0.3633 \)
- \(R^2 = 0.8722 \)
- 6s Radiance
Landsat-7

<table>
<thead>
<tr>
<th>Sensor / Band</th>
<th>Radiance (mw/cm²/sr/micron)</th>
<th>S.D.</th>
<th>Ratio (RS2/6S)</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L7 green</td>
<td>7.93</td>
<td>0.71</td>
<td>0.90</td>
<td>0.19</td>
</tr>
<tr>
<td>6S green</td>
<td>8.79</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L7 red</td>
<td>7.5</td>
<td>0.56</td>
<td>0.87</td>
<td>0.15</td>
</tr>
<tr>
<td>6S red</td>
<td>8.64</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L7 NIR</td>
<td>5.7</td>
<td>0.36</td>
<td>0.91</td>
<td>0.12</td>
</tr>
<tr>
<td>6S NIR</td>
<td>6.23</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L7 SWIR</td>
<td>1.36</td>
<td>0.17</td>
<td>0.81</td>
<td>0.05</td>
</tr>
<tr>
<td>6S SWIR</td>
<td>1.67</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Saral/AltiKa

\[
y = 1.1342x - 0.0316 \quad R^2 = 0.9477
\]

Meghatropiques

Validation of the SARAL/AltiKa SWH (OGDR) using the NDBC Buoy Data

- y = 0.945x + 0.146
- R² = 0.907

Data Analysis:
- **L7 green:**
 - Radiance: 7.93 mw/cm²/sr/micron
 - S.D.: 0.71
 - Ratio (RS2/6S): 0.90
 - S.E.: 0.19
- **6S green:**
 - Radiance: 8.79 mw/cm²/sr/micron
 - S.D.: 0.74
 - Ratio (RS2/6S):
 - S.E.:
- **L7 red:**
 - Radiance: 7.5 mw/cm²/sr/micron
 - S.D.: 0.56
 - Ratio (RS2/6S): 0.87
 - S.E.: 0.15
- **6S red:**
 - Radiance: 8.64 mw/cm²/sr/micron
 - S.D.: 0.55
 - Ratio (RS2/6S):
 - S.E.:
- **L7 NIR:**
 - Radiance: 5.7 mw/cm²/sr/micron
 - S.D.: 0.36
 - Ratio (RS2/6S): 0.91
 - S.E.: 0.12
- **6S NIR:**
 - Radiance: 6.23 mw/cm²/sr/micron
 - S.D.: 0.51
 - Ratio (RS2/6S):
 - S.E.:
- **L7 SWIR:**
 - Radiance: 1.36 mw/cm²/sr/micron
 - S.D.: 0.17
 - Ratio (RS2/6S): 0.81
 - S.E.: 0.05
- **6S SWIR:**
 - Radiance: 1.67 mw/cm²/sr/micron
 - S.D.: 0.26
 - Ratio (RS2/6S):
 - S.E.:

Graphs:
- Graph showing the linear relationship between Landsat-7 and Saral/AltiKa data.
- Graph indicating validation using NDBC Buoy Data.
Salient Features:

- **First Integrated site, to characterize Aerial and Satellite sensors at one location. Site is constructed with sub-soil drainage system to protect soil erosion and water logging.**

Characterization of Aerial sensors (GSD <= 1.3m):
- Spectral -Red, Green, Blue & White Colors.
- Radiometry -Seven grey levels in White-Black.
- Spatial : Bar, Siemens star and High contrast edge targets.
- Height: Six discrete steps in 10-50 cm range.

Characterisation of Satellite sensors (GSD <= 24m):
- Radiometry; Five natural targets with R=9-69 %.
- Sensor spatial quality MTF -High contrast edges.
- In-situ measurements: Met, Atmospheric & surface reflectance measurements at the site.
AN UNIFIED CALIBRATION FIELD FOR AERIAL/VVHR REMOTE SENSING

STEP HEIGHTS ARE EXAGGERATED (Actual: 10cm to 50cm)
Jaisalmer site- Reflectance in INSAT-3D Vis-channel

Statistics over 5 Tiles:
Mean of Mean: 29.94 %
Mean of Std : 5.83 %

INSAT-3D Vis-Channel: 0.55 to 0.75 microns
Joint Calibration Exercise:
RS2 AWIFS & MODIS Cross Calibration over Libya-4 CEOS Site

Collaboration with MODIS (NASA) – FP: Jack Xiong

- Cross calibration was based on 14 AWIFS acquired during June 2011 – Dec. 2012 and corresponding day data of MODIS
- BRDF, Spectral Mismatch, Water Vapor effects are compensated to obtain Radiometric Bias* between two sensors

\[\text{Bias} = \frac{\rho_{\text{TOA MODIS}}}{\rho_{\text{TOA AWIFS}}} \]

<table>
<thead>
<tr>
<th>Bands</th>
<th>TERRA -</th>
<th>Bias</th>
<th>CE-95 Limits</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(%)</td>
</tr>
<tr>
<td>AWIFS B2</td>
<td>MODIS B4</td>
<td>1.014</td>
<td>0.967 – 1.06</td>
<td>8.552</td>
</tr>
<tr>
<td>AWIFS B3</td>
<td>MODIS B1</td>
<td>1.027</td>
<td>0.994 – 1.06</td>
<td>6.095</td>
</tr>
<tr>
<td>AWIFS B4</td>
<td>MODIS B2</td>
<td>1.045</td>
<td>1.020 – 1.069</td>
<td>4.513</td>
</tr>
<tr>
<td>AWIFS B5</td>
<td>MODIS B6</td>
<td>1.096</td>
<td>1.061 – 1.130</td>
<td>6.302</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bands</th>
<th>AQUA -</th>
<th>Bias</th>
<th>CE-95 Limits</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(%)</td>
</tr>
<tr>
<td>AWIFS B2</td>
<td>MODIS B4</td>
<td>1.012</td>
<td>0.962 – 1.061</td>
<td>9.076</td>
</tr>
<tr>
<td>AWIFS B3</td>
<td>MODIS B1</td>
<td>1.024</td>
<td>0.992 – 1.056</td>
<td>5.871</td>
</tr>
<tr>
<td>AWIFS B4</td>
<td>MODIS B2</td>
<td>1.045</td>
<td>1.016 – 1.074</td>
<td>5.347</td>
</tr>
<tr>
<td>AWIFS B5</td>
<td>MODIS B6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Results:
1) Biases for AWIFS B2, B3 within 2% while ~4.5% for B4
2) Bias is about 9.6% for AWIFS B5
3) Std. Dev. is higher; further acquisitions /long term analysis in progress.
Joint Calibration Exercise:
LISS4 Calibration Exercise over CEOS Geometric Sites (Sioux Falls, Pueblo)

• Statistics generated were from 560 and 670 control points.
• Control points from a high resolution, high accuracy (<60cm) aerial imagery.

Band Misregistration Error (Specs: ± 0.3 p RMSE)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Red (B3) – Green (B2)</th>
<th>Near IR (B4) – Red (B3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Line (AL)</td>
<td>Pixel (AX)</td>
</tr>
<tr>
<td>Min</td>
<td>-0.24</td>
<td>-0.32</td>
</tr>
<tr>
<td>Mean</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Max</td>
<td>0.25</td>
<td>0.32</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.12</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Location Inaccuracy Specs: < 200m RMSE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Location Error pixels (in m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Line (AL)</td>
</tr>
<tr>
<td>Min</td>
<td>0.75</td>
</tr>
<tr>
<td>Mean</td>
<td>28</td>
</tr>
<tr>
<td>Max</td>
<td>55.4</td>
</tr>
<tr>
<td>Std.Dev.</td>
<td>14</td>
</tr>
<tr>
<td>RMSE</td>
<td>31.3</td>
</tr>
</tbody>
</table>

In Progress:
• Radiometric Calibration with L7/L8 over CEOS sites
• Geometric calibration to be repeated for consistency
RISAT-1 Calibration Exercise at Gunning (Canberra, Australia)

Joint Calibration Exercise - with Passive Corner Reflectors
Image Acquisition planned between Dec13 and Mar14

18 Triangular Trihedrals installed at Location ~ (149.20 Lat/-34.8 Long)

<table>
<thead>
<tr>
<th>CR Type</th>
<th>CR No.</th>
<th>CR Size (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh</td>
<td>1,6,10</td>
<td>1.5</td>
</tr>
<tr>
<td>Powder</td>
<td>4,9,12</td>
<td>1.5</td>
</tr>
<tr>
<td>Metal</td>
<td>(7,11,15)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>(5,8,16)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>(3,13,17)</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>(2,14,18)</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Installation completed by 20DEC13
RISAT-1 Imaging and Processing in progress
Background Clutter Analysis

RISAT-1 Imaging on 17Nov13
Inc Angle : 21.01 deg

<table>
<thead>
<tr>
<th>CR</th>
<th>σ_o</th>
<th>CR</th>
<th>σ_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>11.36</td>
<td>12</td>
<td>10.78</td>
</tr>
<tr>
<td>3,4</td>
<td>11.32</td>
<td>13</td>
<td>10.41</td>
</tr>
<tr>
<td>5,6</td>
<td>10.15</td>
<td>14</td>
<td>11.24</td>
</tr>
<tr>
<td>7</td>
<td>10.19</td>
<td>15</td>
<td>10.99</td>
</tr>
<tr>
<td>8</td>
<td>10.0</td>
<td>16</td>
<td>10.59</td>
</tr>
<tr>
<td>9</td>
<td>9.93</td>
<td>17</td>
<td>10.04</td>
</tr>
<tr>
<td>10</td>
<td>9.22</td>
<td>18</td>
<td>10.55</td>
</tr>
<tr>
<td>11</td>
<td>9.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RISAT-1 Imaging of CRs at Gunning

Site map

CRs 1 to 6

Imaging

CRs 7 to 11

CRs 12 to 18
Preliminary Results

<table>
<thead>
<tr>
<th>CR#</th>
<th>TYPE</th>
<th>Size</th>
<th>Loc. Incid. Ang. (deg)</th>
<th>PSLR (dB)</th>
<th>Res. (m)</th>
<th>Azimuth Range</th>
<th>Azimuth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Metal</td>
<td>1.0m</td>
<td>31.64</td>
<td>-24.4</td>
<td>3.92</td>
<td>-19.38</td>
<td>2.25</td>
</tr>
<tr>
<td>8</td>
<td>Metal</td>
<td>1.5m</td>
<td>31.63</td>
<td>-20.79</td>
<td>4.97</td>
<td>-15.85</td>
<td>2.47</td>
</tr>
<tr>
<td>9</td>
<td>Metal</td>
<td>1.5m</td>
<td>31.67</td>
<td>-22.7</td>
<td>3.47</td>
<td>-17.15</td>
<td>2.36</td>
</tr>
<tr>
<td>10</td>
<td>Mesh</td>
<td>1.5m</td>
<td>31.65</td>
<td>-18.29</td>
<td>5.12</td>
<td>-17.58</td>
<td>2.7</td>
</tr>
<tr>
<td>11</td>
<td>Powder</td>
<td>1.0m</td>
<td>31.73</td>
<td>-26.35</td>
<td>3.47</td>
<td>-21.34</td>
<td>2.36</td>
</tr>
</tbody>
</table>

Specs: PSLR = -17db
Summary

• Indian Cal-Val program – aiming to set up instrumented cal-val site for radiometric calibration and land/ocean/atmospheric information products validation.

• Collaboration with CEOS WGCV in joint campaigns for inter-sensor calibration and validation pertaining to ECVs and SBA information products.
Thank you for your attention