CEOS-WGCV38 Terrain Mapping Sub-group: Current Status and GEO IN-02-C2.1 report

Jan-Peter Muller

j.muller@ucl.ac.uk Point-of-Contact, GEOSS Task IN-02 Chairperson, CEOS-WGCV Sub-group on Terrain mapping from satellites Chairperson, ISPRS Commission IV WG on "Global DEM Interoperability" Head, Imaging Group Professor of Image Understanding and Remote Sensing HRSC Science Team Member (ESA Mars Express 2003) Stereo Panoramic Camera Science Team Member (ESA EXOMARS) MODIS & MISR Science Team Member (NASA EOS Project) TerraSAR-X and TANDEM-X science team member (DLR-Astrium)

*partially supported by UK Space Agency

TMSG Modus Operandi

- Terrain mapping SG linked to ISPRS IV/3 on "Global DEM interoperability" and GEO task IN-02-C2.1 on "Global DEM"
- Annual technical workshops as part of an international conference
 - ISPRS Commission IV Symposium, Orlando, FL, 16-18 November 2010
 - 2011 symposium had to be abandoned due to Japanese tsunami
 - Special session at ISPRS Congress, Melbourne, 26 August 2 September 2012
 - Invited talk & sessions at ISPRS Comm.IV Symposium, Suzhou, 18-20 May 2014
 - Planned invited sessions at IGARSS 2015 in Milan, Italy, 26-31 July 2014
- News announcements as and when there is relevant news (included news on the release of the SRTM v3, TanDEM-X AO in December 2013)
- Emails to collect inputs for WGCV #38 (59 on email list, 5 responses in total)
- Everything done on a "best efforts" basis with minimal funding so limited ambitions at present to meet specific objectives
- JPM continuing in role as Chair until he finds replacement. Exit strategy under discussion with UK Space Agency and able to provide some support.
- Key goals are the generation of higher spatial resolution spaceborne DEMs (and bathymetric DEMs) and derived DTMs for next generation sensors

• Keen to move forward with studying impacts of DEM uncertainties on derived LPV, IVOS and SAR products

MSSL/DEPARTMENT OF SPACE & CLIMATE PHYSICS

Why does GEO need global topography/ bathymmetry?

- Global DEM required for 6 of the 9 societal benefit areas identified by the Implementation Plan of GEOSS 2005-2015, and for 2015-2025
- Natural disasters all require detailed knowledge of topography
 - either directly for volcanic dome monitoring, flood inundation areal predictions, landslides
 - or for downstream EO processing, e.g. InSAR for earthquake monitoring and possible prediction
- Poor bathymetric and topography knowledge hinders tsunami forecasts
- Tsunami a main spur for GEO implementation

30m height "flood-fill" based on SRTM-DTED1® 3" (≈90m)

MSSL/DEPARTMENT OF SPACE & CLIMATE PHYSICS

2' (≈4km) Smith, Walter H.F., and David T. Sandwell, 1997 "Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings", Science, 277, 1956-1962, 1997

k

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) Version 3

- Global 83N to 83S– 30m DEM available free to all users
- Version 1 released June 2009, Version 2 released October 2011
- 30 million 1x1 degree tiles distributed
- Version 3 planned for release Fall 2015
 - Will include land-water mask
 - Will include data plane identifying water bodies as ocean, lake or river
 - Further removal of artifacts
 - Addition of 3 years of stereo data to fill in holes over perennially cloudy areas

Precise Global Digital 3D Map "ALOS World 3D" (AW3D) New Global DEM Dataset Generation

New Global DEM Dataset Generatior by ALOS PRISM

September 30, 2014

Takeo Tadono Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA) tadono.takeo@jaxa.jp

XA "ALOS World 3D" (AW3D)

The Japan Aerospace Exploration Agency (JAXA) is starting to process the precise global digital 3D map using some 3 million data images acquired by the Panchromatic Remote sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite *"DAICHI"* (ALOS).

The digital 3D map consists of a DEM (or DSM) and ortho-rectified images (ORI) that indicate geolocation. DEM is compiled this time has a <u>five meters</u> in spatial resolution with five meters height accuracy (RMSE) that enables us to express land terrain all over the world. Hence its strong character will prove useful in various areas including mapping, damage prediction of a natural disaster, water resource research etc.

The global 3D map processing will be completed by <u>March 2016</u>. JAXA will commission the compiling work, and service provision to NTT DATA Corporation and Remote Sensing Technology Center of Japan (RESTEC).

In order to popularize the utilization of the 3D map data, JAXA is also preparing global DEM with <u>lower spatial resolution</u> (of about 30 meters under the current plan) to publish it as soon as it is ready. It will be <u>available free of charge for any users</u>. We expect that the 3D map will contribute to the expansion of satellite data utilizations and the industrial promotion, science and research activities as well as the Group on Earth Observations (GEO).

JAXA AW3D: http://www.eorc.jaxa.jp/ALOS/en/aw3d/index_e.htm AW3D NTT DATA and RESTEC: http://alos-world3d.jp/en/index.html Sample movies of the digital 3D map: http://www.youtube.com/watch?v=pZg78PXnlQc

PRISM Data Acquisition Result

■ Global archive of PRISM stereo scenes (35km x 35km)

- Over 1 million stereo or triplet sets with cloud level < 30 % / scene in global

Distribution of PRISM stereo scene archives (cloud level < 30%)

JAXA **Processing Status of AW3D Product**

11

Specification of "ALOS World 3D" Product

ARE SOL		Contents and def	initions of "AW3D" Dataset (Level 1)
		Dataset Name	Contents
	1	Precise DSM Dataset	 Area: Global land area within 82 deg. of N/S latitudes Horizontal spacing: 0.15arcsec (approx. 5 m) Management: 1 deg. tile of lat/long, approx. 22,000 tiles in total Contents: DSM file (DSM): <u>5 m (RMSE)</u> in height accuracy Mask file (MSK) Stack number file (STK) Header information (HDR) Scene list (LST) Quality assurance information (QAI)
DSM (N031E130) 5 m spacing	2	ORI Dataset	Ortho rectified image of PRISM nadir-looking Horizontal spacing: 0.075arcsec (approx. 2.5 m) Management: Individual scene unit Contents: - Ortho rectified image for nadir (ORI): 5 m (RMSE) in geolocation accuracy - Header information (OHR)
	3	Correlation Coefficient Image (CCI) [*]	The averaged correlation coefficient distribution image of available stereo pairs in scene-bases. Definition: The index shows image matching quality <i>e.g.</i> a correlation coefficient for the aerial correlation matching.
		* An intermediate product	
- A low-res (5 m) will b	iolu De (ition DSM dataset (30 r	n spacing, TBD) with same height accuracy ee of charge as soon as it is ready.

"ALOS World 3D" Product Level

	Level 1	Level 2	Level 3
Туре	DSM Digital Surface Model	DSM Digital Surface Model	DTM Digital Terrain model
Coverage		Global (land)	
Unit	Tile (1 degree x 1 degree) Mesh (0.2 degree x 0.2 degree) AOI*	AOI*	AOI*
Resolution	5m (Please ask for other resolution)		
Horizontal Accuracy	5m (RMSE)		
Vertical Accuracy	5m (RMSE)		
Coordinate system	Geographic Lat/Lon (ITRF97[GRS80]) (Please ask for UTM)		
Format	GeoTIFF		
Image files	DSM (elevation in meter, 16bit integer), Mask image	DSM (elevation in meter, 16bit integer**), Mask image	TBD
Height type	Ellipsoid height	Ellipsoid height or Elevation (height above sea level)	Ellipsoid height or Elevation (height above sea level)
Minimum sales area (AOI)	400km ²	400km ²	400km ²

*: Single polygon with 4 or more vertices. Each side: 10km or more. Each angle: 90degrees or more. **: Please ask for float.

JAXA

- Sample DSM datasets are available on http://alos-world3d.jp/en/index.html - Contact by E-mail to: data@restec.or.jp

15

Release of (most of) SRTM 30m elevation data for Africa

90m versus 30m comparison site (next slide): Crater Highlands, Tanzania

> JPL Photojournal Image PIA06669

CRIPPEN, JPI

COVERAGE OF SRTM3 RELEASE

SRTM 1" (\approx 30m) first data release ordered by President Obama and announced at the World Climate Summit at the UN on 23.9.14

Relevant text from White House

Releasing Powerful New Data to Enable Planning for Resilience

<u>To empower local authorities to better plan for the impacts of severe</u>

ges such as drought, glacial retreat, flooding, landslides, coastal storm surges, agricultural stresses, and challenges concerning public health, today the National Aeronautics and Space Administration (NASA), the National Geospatialintelligence Agency (NGA), and the U.S. Geological Survey (USGS), as part of an ongoing commitment to open data and international data sharing through the intergovernmental Group on Earth Observations, will release a collection of higherresolution elevation datasets for Africa. Datasets covering other global reg e within one year, with the next release of data providing more accurate elevation information for Mexico, Central and South America, and the Caribbean. Until now, elevation data for Africa were freely and publicly available only at 90-meter resolution. The datasets being released today, and during the course of the next year -which are based on data collected by sensors designed by an international partnership and carried on the U.S. Space Shuttle-resolve to 30-meters and will be used worldwide to improve environmental monitoring, climate change research including sea-level rise impact assessments, and local decision support. These datasets are being made available via a user-friendly interface on USGS's Earth Explorer website. With a commitment from the Secure World Foundation, and in collaboration with the Committee on Earth Observation Satellites,

<section-header>

Announcements of Opportunity

Science Opportunities for the following products:

Announcements (release date, closing date)

- Intermediate DEM (from first global coverage, difficult terrain excluded, for selected regions only)
 CoSSC from the global DEM acquisition
 5.12.13, 14.3.14
- TanDEM-X DEM

Summer 2014??

DEM Products for Scientific Use Intermediate DEM (no global coverage)

DEM Product	Spatial Resolution Absolute	Horizontal Accuracy CE90	Absolute Vertical Accuracy LE90	Relative Vertical Accuracy
IDEM (intermediate DEM)	~12m (0.4 arcsec @ equator	<10m	<10m	Not specified
IDEM (1 arcsec)	~30 m (1 arcsec @ equator)	<10m	<10m	Not specified
IDEM (3 arcsec)	~90 m (3 arcsec @ equator)	<10m	<10m	Not specified

Mon Jul 8 05:51:11 2013

Intermediate DEM (IDEM): Distribution 180 90 0 90 180 0 0 180 90 90 180 Ó Investigated area: ul-lr lon/lat -180 90 - 180 -90 cell created Found cells: 2697 cell updated cell archived cell reloaded cell deleted Total kbytes: 1517837008 Covered skm: 12656286.0

Preliminary assessment of TanDEM-X i-DEM over CEOS-WGCV test site

Jan-Peter Muller, Luyi Sun, Lang Feng September 2014

TDX IDEM, London, UK (N51W001)

Height Difference on water body compared with 30m BlueSky DTM – statistics before and after surface matching

Statistics of height difference on water body between 12m, 30m, 90m TDX and the reference BlueSky DTM before surface matching

	12m TDX - BlueSky	30m TDX - BlueSky	90m TDX - Bluesky
Minimum (m)	0	0	0
Maximum (m)	64.7142	63.6962	60.9765
Mean (m)	47.5184	47.6065	47.5147
Standard deviation (m)	7.7035	7.2998	7.3462

Statistics of height difference on water body between 12m, 30m, 90m TDX and the reference BlueSky DTM after surface matching

	12m TDX - BlueSky	30m TDX - BlueSky	90m TDX - Bluesky
Minimum (m)	-21	-20.9702	-9.243
Maximum (m)	16.571	13.9416	14.0642
Mean (m)	0.72662	0.52334	0.45149
Standard deviation (m)	3.7724	3.4422	3.141

Height Difference compared with 30m BlueSky DTM- histograms & statistics

Histograms of height difference between 12m, 30m, 90m TDX and the reference BlueSky DTM

Table 1. Statistics of height difference

	12m TDX – 30m Bluesky	30m TDX – 30m Bluesky	90m TDX – 30m BlueSky
Minimum (m)	-28.7411	-27.9271	-30.4382
Maximum (m)	35.9167	35.1255	35.24
Mean (m)	1.178	1.0542	0.83294
Standard deviation (m)	6.0226	6.0836	6.1844

Histograms of height difference between 30m ASTER GDEM, 30m TDX IDEM and 30m BlueSky DTM, all using the latter as reference DEM/DTM

Table 1. Statistics of height difference

	30m ASTER – 30m BlueSky	30m TDX – 30m BlueSky	30m ASTER – 30m TDX
Minimum (m)	-38.76	0	-71.6033
Maximum (m)	49.04	76.6161	0
Mean (m)	1.5099	48.7182	-46.391
Standard deviation (m)	9.7818	4.9713	10.7292

MSSL/DEPARTMENT OF SPACE & CLIMATE PHYSICS

BlueSky DTM, all using the latter as reference DEM/DTM

Table 1. Statistics of height difference

	ASTER - BlueSky	TDX - BlueSky	ASTER - TDX
Minimum (m)	-39.4276	-27.9271	-46.5269
Maximum (m)	43.89	35.1255	50.4921
Mean (m)	0.0064334	1.0542	0.094232
Standard deviation (m)	9.8377	6.0836	9.9626

Height Difference maps after surface matching

<section-header><figure><text><text>

Histograms of height difference between 90m SRTM-C DEM, 90m TDX IDEM and 30m BlueSky DTM

Table 1. Statistics of height difference

	90m SRTM – 30m BlueSky	90m TDX – 30m BlueSky	90m SRTM – 90m TDX
Minimum (m)	-27.88	0	-55.3804
Maximum (m)	35.04	79.0932	0
Mean (m)	1.9656	48.707	-45.912
Standard deviation (m)	4.9239	4.6935	6.5862

00m TD

MSSL/DEPARTMENT OF SPACE & CLIMATE PHYSICS

BlueSky DTM

Table 1. Statistics of height difference				
90m SRTM – 30m BlueSky	y 90m TDX – 30m BlueSky	90m SRTM		

	Join SKIW – Join Diucsky	John TDA – John Diucsky	Join SKIW – Join IDX
Minimum (m)	-121.72	-30.4382	-17.7994
Maximum (m)	64.6961	35.24	16.4796
Mean (m)	0.33065	0.83294	-0.21495
Standard deviation (m)	7.7563	6.1844	4.2438

Height Difference maps AFTER surface matching

N.B. Note the residual planimetric offsets still remaining

Height Difference after surface matchinghistograms & statistics

Histograms of height difference between 90m SRTM-C DEM, 90m TDX IDEM and 30m BlueSky DTM

Table 1.	Statistics	of height
----------	------------	-----------

	90m SRTM – 30m BlueSky	90m TDX – 30m BlueSky	90m SRTM – 90m TDX
Minimum (m)	-121.72	-30.4382	-17.7994
Maximum (m)	64.6961	35.24	16.4796
Mean (m)	0.33065	0.83294	-0.21495
Standard deviation (m)	7.7563	6.1844	4.2438

Height Difference maps after surface matching

GEO Task IN-02: Global Datasets Role for Global DEM IN-02 Earth datasets consist of 2 sub-tasks: - C1: Advances in Life-cycle Data Management - C2: Development of Regional/Global Information and Cross-cutting Datasets IN-02 Point of Contact: Mike Abrams (JPL, ASTER PI) • Proposed on 1-Feb-14 to CEOS Executive Officer, Kerry Sawyer, that activity continue into the next 3 year implementation period under CEOS wing to cover - 2014/15 release of SRTM V2 at 1 arc-second (≈30m) $-\approx 2015$ release of TanDEM-X DEM at 3 arc-seconds (≈ 90 m) - 2015/16 release of ALOS-PRISM DEM at 1 arc-seconds (≈30m) - 2017 release of re-processed NASADEM at 1 arc-seconds (≈30m) - Unknown dates for creation of bathymetry of continental shelves using SAR & high resolution EO, once support is released • Unsure what happened to this recommendation **MSSL/DEPARTMENT OF SPACE & CLIMATE PHYSICS**

