Calibration performance of Advanced Himawari Imager (AHI) from one-year operational data

Arata Okuyama Meteorological Satellite Center / Japan Meteorological Agency

5st September 2016, Tokyo, Japan CEOS WGCV Plenary # 41

HIMAWARI-8

2014

2016 HIMAWARI-9

Meteorological Satellite Center (MSC) of JMA

Himawari-9 launch planned date

- Planned date:
 - 1 November 2016
- Time:
 - 06:20 09:18 (UTC)
- Launch site:
 - Tanegashima Space Center, Japan
- Launch vehicle:
 - H-IIA #31

Meteorological Satellite Center (MSC) of JMA

Improved resolutions

Target Area Observation (Typhoon)

21 UTC on 9th – 10 UTC on 10th, May 2015 Typhoon Noul (2015) Band 03

Image Navigation and Registration (INR)

INR Approaches

- Orbit determination: based on ranging data
- Satellite attitude determination: based on star tracker and gyro data
 - It is refined using landmark analysis based on pattern matching for coastlines
- Based on the refined information, raw data is resampled and converted to Himawari Standard Data (HSD, L1B equiv. data) .

Validation approach

Residual image navigation error in the HSD is validated using landmark analysis

Performance

- Usually less than 0.5 IR pixels (approx. 1 km at SSP)
- The error occasionally/provisionally becomes larger in the <u>next full-disk observing cycle</u> after <u>station keeping maneuver</u> and at the timing of <u>satellite eclipse</u>

Calibration

- On-board Calibration Target
 - VIS/NIR: solar diffuser (SD)
 - SD observation: twice a month
 - Deep space observation: every swath
 - Calibration slope is updated in June 2015 and the offset is updated every swath.

$$L_{obs} = \frac{q_n(C - C_{sp})^2 + m_n(C - C_{sp})}{\rho_{ns}(\theta)\rho_{ew}(\phi)}$$

- IR: black body
 - Black body observation: every 10 mins
 - Deep space observation: every swath
 - Calibration coefficients are updated based on black body (every 10 mins.) and deep space (every swath).

 $L_{obs} = F(\theta,\phi)(q_nC^2 + m_nC + b_n) - G(\theta)R_{Mns} - H(\theta,\phi)R_{Mew}$

Radiometric Calibration Methods

Band [µm]	Solar Diffuser	Black Body	GSICS (IR)	GSICS (DCC)	GSICS (Moon)	RT simulation	Ray matching	GEO- GEO
Band1 [0.47]	Y			(Y)	(Y)	Y	Y	Y
Band2 [0.51]	Y			(Y)	(Y)	Y	Y	Y
Band3 [0.64]	Y			(Y)	(Y)	Y	Y	Y
Band4 [0.86]	Y			(Y)	(Y)	Y	Y	Y
Band5 [1.6]	Y			(Y)	(Y)	Y	Y	Y
Band6 [2.3]	Y			(Y)	(Y)	Y	Y	Y
Band7 [3.9]		Y	Y					Y
Band8 [6.2]		Y	Y					Y
Band9 [6.9]		Y	Y					Y
Band10 [7.3]		Y	Y					Y
Band11 [8.6]		Y	Y					Y
Band12 [9.6]		Y	Y					Y
Band13 [10.4]		Y	Y					Y
Band14 [11.2]		Y	Y					Y
Band15 [12.4]		Y	Y					Y
Band16 [13.3]		Y	Y					Y

VIS/NIR bands

Trend of SD observation

- Solar diffuser (SD) observation is performed <u>twice a month</u>
- Degradation: <u>~0.5%/yr in Bands 1-4</u>, not clear in Bands 5 and 6
 - Generally consistent results with other calibration methods (will be shown later)

The values are averaged over all the detectors and are normalized at the first observation on 7 March 2015.

Calibration slopes

RT simulation and **Ray-matching (VIIRS)** approach

 Calibration coefficients are updated in June 2015 based on SD obs.

VIS/NIR bands

- Calibration bias was reduced after the updating .
- Band 1-4 observations are close to reference, band 5/6 show 4-7 % bias.

RT simulation: comparison with simulation Ray-matching: comparison with VIIRS

VIS/NIR bands

Meteorological Satellite Center (MSC) of JMA

IR bands

Meteorological Satellite Center (MSC) of JMA

TB bias trend is stable, less than 0.2K

Standard scene: typical brightness temperature defined as 1976 US Standard Atmosphere at nadir, at night, in clear sky, over 11 the sea with SST=288.15K and a wind speed= 7m/s. It is computed by radiative transfer model, RTTOV.

IR bands

Time dependence of TB biases

Updates of Himawari-8 Ground Processing System

Ground processing module was updated in March 2016.

- 1. Improvement of the <u>band-to-band co-registration process</u> <u>for IR bands</u>
- 2. Improvement of the <u>resampling</u> process
- 3. Implementation of a <u>coherent noise reduction process</u>
- 4. Bug fix for HSD header information

The updates improved Himawari-8 image quality.

14

Ground Processing System Update – Band-to-band Co-registration Process for IR Bands

- Applied bands: IR bands 7, 8, 9, 10, 11, 12 and 15
- In the old process, co-registration correction was estimated:
 - ✓ Based on co-registration errors from pattern matching during in-orbit testing
 - ✓ VNIR and Band 7 (3.9µm): optimized using <u>AHI's temperature</u>
 - ✓ IR except Band 7: <u>constant</u>
- In the new process: (applied in March 2016)
 - ✓ Based on the <u>co-registration errors of previous full-disk observing cycle w/o optimization</u>
 - ✓ Change of pattern matching method and a bug fix to determine its domain is also included
 - ✓ Significant error reduction (e.g. ~0.2km -> ~0.02km in band 15)
 - New process would also be applied to remaining bands in future
 - The new process will be applied to VIS/NIR , IR bands 14 and 16: (Planned Shortly)

Band-to-band co-registration errors w.r.t. band 13 (10.4 µm) observation

Ground Processing System Update – Resampling Process

- Applied bands: All bands
- In the old process:
 - ✓ Unnatural spotted pixels in band-to-band differential imagery at the edge of clouds
 - ✓ Due to unoptimized resampling and large band-to-band co-registration errors
- In the new process (refined resampling parameters)
 - ✓ Band-to-band radiance inconsistency is significantly reduced
 - $\checkmark\,$ New band-to-band co-registration process also contributed to this improvement

Ground Processing System Update – Coherent Noise Reduction Process

- Applied bands: 1, 2, 4, 5, 6, 10, 11, 12, 13, 14, 15. Band 7 had been applied already.
- What is the "coherent noise" and its reduction process?
 - ✓ Stripes perpendicular to the scan direction over <u>low-radiance areas</u>
 - ✓ E.g. cloud-free ocean in VIS/NIR, deep convective cloud in IR and deep space in all bands
 - ✓ Noise reduction parameters: based on deep-space observation and the Fourier transform

Images with/without the noise reduction process

Band 4 (0.86 µm) 00:20 UTC on 25 November 2015

Summary

- Residual error in the HSD is less than ~1km
- Calibration
 - IR: very stable TB biases less than 0.2K for standard scenes, no significant diurnal variation
 - VIS/NIR (reflectivity/radiance): less than +/- 3% for band 1-4 (0.46–0.86 μm) since June 2015, but +/- 4-6% biases still remain in band 5/6 (1.6 and 2.3 μm)
- Updates of ground processing system in March 2016
 - Band-to-band co-registration, resampling process, coherent noise reduction: significant improvement in image quality
 - The update will be applied to other bands shortly.

Acknowledgement

JMA is grateful to JAXA, NOAA, EUMETSAT, GSICS and researchers in Japanese universities for our collaboration on Cal/Val and products development.

Meteorological Satellite Center (MSC) of JMA

• Back up

Himawari-9

2022 - 2029

Overview – Planning of JMA satellite systems (Himawariseries)

GMS (<u>G</u>eostationary <u>M</u>eteorological <u>S</u>atellite)

Advanced Himawari Imager (AHI) on Himawari-8 Satellite

- Himawari-8 started operation on 7 July 2015
- AHI : new generation GEO imager
 - $\checkmark~$ 3 VIS, 3 NIR and 10 IR bands
 - ✓ Full disk observing cycle: 10 min., rapid scanning within 2.5 min. / 30 sec. intervals

	Hi	mawari-8/A	HI	GOES	S-R/ABI	/IMAGER	
Band	Wave	Spatial	Rit donth	Wave	Spatial	Wave	Spatial
	length	resolution	bit deptit	length	resolution	length	resolution
1	0.47 µm	1km	11	0.47 µm	1km		
2	0.51 µm	1km	11				
3	0.64 µm	0.5km	11	0.64 µm	0.5km	0.68 µm	1km
4	0.86 µm	1km	11	0.86 µm	1km		
				1.38 µm	2km		
5	1.6 µm	2km	11	1.61 µm	1km		
6	2.3 µm	2km	11	2.26 µm	2km		
7	3.9 µm	2km	14	3.90 µm	2km	3.7 µm	4km
8	6.2 µm	2km	11	6.15 µm	2km	6.8 µm	4km
9	6.9 µm	2km	11	7.00 µm	2km		
10	7.3 µm	2km	12	7.40 µm	2km		
11	8.6 µm	2km	12	8.50 µm	2km		
12	9.6 µm	2km	12	9.70 µm	2km		
13	10.4 µm	2km	12	10.3 µm	2km	10.8 µm	4km
14	11.2 µm	2km	12	11.2 µm	2km		
15	12.4 µm	2km	12	12.3 µm	2km	12.0 µm	4km
16	13.3 µm	2km	11	13.3 µm	2km		

Spectral Bands

Meteorological Satellite Center (MSC) of JMA

#	Himawari -8/ AHI	GOES-R/ ABI	GK-2A/ AMI	MTG/ FCI	FY-4/ AGRI	MTSAT-2/ IMAGER	GOES-15	GOES-11	MSG/ SEVIRI	SNPP,JPSS/ VIIRS	Terra, Aqua/ MODIS	NOAA/ AVHRR
1	0.47	0.47	0.455	0.444	0.47					0.488 (M03)	0.488	
2	0.51		0.511	0.510						0.555 (M04)	0.531	
3	0.64	0.64	0.642	0.640	0.65	0.68	0.65	0.65	0.635	0.672 (M05) 0.64 (I01)	0.667	0.630
4	0.86	0.86	0.860	0.865	0.825				0.81	0.865 (M07) 0.865 (I02)	0.870	0.862
				0.914							0.905	
		1.38	1.38	1.380	1.375					1.378 (M09)	1.375	
5	1.6	1.61	1.61	1.610	1.61				1.64	1.610 (M10) 1.61 (I03)	1.640	1.61
6	2.3	2.26		2.250	2.25					2.250 (M11)	2.130	
7	3.9	3.90	3.85	3.80	3.75	3.7	3.90	3.90	3.92	3.70 (M12) 3.74 (I04)	3.750	3.74
8	6.2	6.15	6.24	6.30	6.25	6.8	6.55	6.75	6.25		6.715	
9	6.9	7.00	6.95		7.1							
10	7.3	7.40	7.34	7.35					7.35		7.325	
11	8.6	8.50	8.60	8.70	8.5				8.70	8.55 (M14)	8.550	
12	9.6	9.70	9.63	9.66					9.66		9.730	
13	10.4	10.3	10.43	10.50	10.7	10.8	10.70	10.70	10.8	10.763 (M15)		10.80
14	11.2	11.2	11.20		11.0					11.45 (105)	11.030	
15	12.4	12.3	12.30	12.30		12.0		11.95	12.0	12.013 (M16)	12.020	12.00
16	13.3	13.3	13.30	13.30	13.5		13.35		13.4		13.335	

 $\ensuremath{^*}$ Some picked up bands are shown for MODIS, VIIRS

AHI Scan Scenario

ITT Corporation, Space Systems Division (C)2009

ADVANCED HIMAWARI IMAGER OPERATIONS SCAN SCENARIO

Ground Processing System Update – Band-to-band Coregistration Process for IR Bands

• Old process to estimate co-registration correction:

- ✓ Based on co-registration errors from pattern matching during in-orbit testing
- ✓ VNIR and Band 7 (3.9µm): optimized using <u>AHI's temperature</u>
- ✓ IR except Band 7: <u>constant</u>
- New process applied to IR bands 7, 8, 9, 10, 11, 12 and 15: (on March 2016)
 - ✓ Based on the <u>co-registration errors of previous full-disk observing cycle w/o optimization</u>
 - ✓ Change of pattern matching method and a bug fix to determine its domain is also included
 - ✓ Significant error reduction (e.g. ~0.2km -> ~0.02km in band 15)
 - New process would also be applied to remaining bands in future
- New process applied to VIS/NIR , IR bands 14 and 16: (Planned Shortly)

Band-to-band co-registration errors w.r.t. band 13 (10.4 µm) observation

BAND	01	02	03	04	05	06	
BEFORE	0.1977	0.1996	0.3144	0.2074	0.4048	0.1979	Units in IR pixel size
AFTER		Expec	(1pixel = 2km at SSP)				

BAND	07	08	09	10	11	12	13	14	15	16
BEFORE	0.1162	0.1284	0.2159	0.2256	0.2756	0.1803	-	0.1168	0.1130	0.0159
AFTER	0.0134	0.0084	0.0091	0.0104	0.0115	0.0098	-	similar order of other bands	0.0081	in the same order

• "BEFORE" and "AFTER": averages of all full-disk data 4-8 and 10-14 March 2016

• VIS/NIR bands: daytime averages (21:00-08:50 UTC)

Data dissemination/distribution methods

Two Ways of Himawari-8/9 Imagery Dissemination/Distribution

HimawariCast via Communication Satellite

- <u>14 bands</u> (1 Vis. And 13 IR) every <u>10 minutes</u> for Full Disk
- Coarse Spatial Resolution as of MTSAT <u>HRIT compatible</u>
- Meteorological data and products in <u>SATAID format</u>
- No Pass Code for Receiving

HimawariCloud via Internet Cloud

- Full Specification (temporal and spatial) of Imagery
- Himawari Standard Format
- HRIT files(same as the ones disseminated via HimawariCast)

Meteorological Satellite Center (MSC) of JMA

Data dissemination/distribution methods

AHI navigation process

- Orbit/Attitude determination
 - Himawari-8's orbit determination is based on ranging data.
 - The satellite attitude determination involves the use of star trackers and gyros.
 - The attitude of the imager is not necessarily the same as that of the satellite itself due to the effects of misalignment and/or thermal distortion.
- Refinement of the attitude
 - Absolute error:
 - The attitude is refined using landmark analysis based on pattern matching for coastlines. This process is applied a reference band.
 - Relative (band-to-band) error:
 - Band to band co-registration error is estimated by a pattern matching between the reference band image and a target band image.
 - The estimated error is reflected into satellite attitude.
- In ABI...
 - These process is similar to ABI. ABI use star sensing to refine the imager's attitude, but we use landmark analysis instead of the star sensing.

Based on "Himawari-8/AHI latest performance of navigation and calibration", Tasuku Tabata, et. al., Meteorological Satellite Ctr., Japan Meteorological Agency, 9881-94, SPIE Asia Pacific remote sensing, 2016

Validation of registration

- Approach
 - The residual image navigation error in Himawari Standard Data (HSD) is evaluated via landmark analysis.
- Error amount
 - The error is monitored and is usually less than 0.5 pixels (~ 1 km at SSP).
 - However, image navigation error occasionally and provisionally becomes larger in the next timeline of orbit determination after station keeping maneuver and the timing of satellite eclipse.

Validation of registration

- Example: The exceptional large error
 - There are two spikes in the Figure.
 - The first: the timing of the sun disappearing behind the earth at 14:20 UTC
 - And the other: its re-emergence at 15:20 UTC.

Meteorological Satellite Center (MSC) of JMA **3. Ocean color: Chl-a 2015/07/20-27 00:00-05:50 (AHI)**

H08-20150720-0000-8D-ROC001-FLDK.02401-02401.nc, Himawari-8 AHI equal latitude-longitude map data (8-day average), chlor-a.

Hiroshi Murakami, "JAXA Himawari-8 Ocean Color and Aerosol", 2016 GSICS Data & Research Working Groups Meeting Mini Conference, 29 Feb.,2016

Note that this is not retrieved from one image but based on images in 1 week.

History of imagers' spectral response (VIS/SWIR)

- GEO imagers' spectral resolution have gotten closer to the LEO imagers', in the new generation meteorological satellites.
- Now is a good time to use GEO imager in combination with LEO imager.

AVHRR1: http://www.star.nesdis.noaa.gov/smcd/spb/fwu/homepage/AVHRR/spec_resp_func/index.html MODIS: ftp://mcst.ssaihq.com/pub/permanent/MCST/PFM_L1B_LUT_4-30-99/L1B_RSR_LUT/ SGLI: http://suzaku.eorc.jaxa.jp/GCOM_C/w_sgli/c_sgli_prod_01.html