CEOS WGCV Plenary 41, 5-7 September 2016, Tokyo, Japan

Introduction of KMA/NMSC and its calibration activities

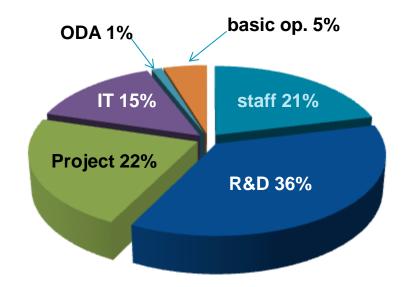
5 September 2016

Dohyeong Kim KMA

KMA/NMSC and Current Satellite

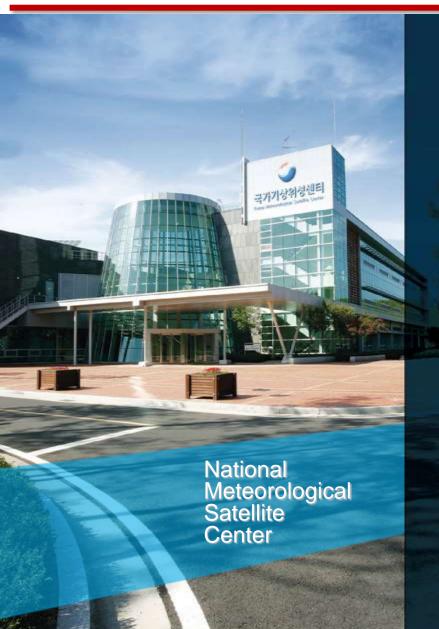
General information of KMA/NMSC

History of KMA


- Founded as the Central Meteorological Office in 1949
- Promoted to the Korea Meteorological Administration in 1990
- Promoted to the rank of Vice Minister in 2005

Staff (NMSC/KMA)

✓ 49 / 1,340 employees in total


Budget (NMSC/KMA)

✓ 78 / 402 M as of 2016 (19%)

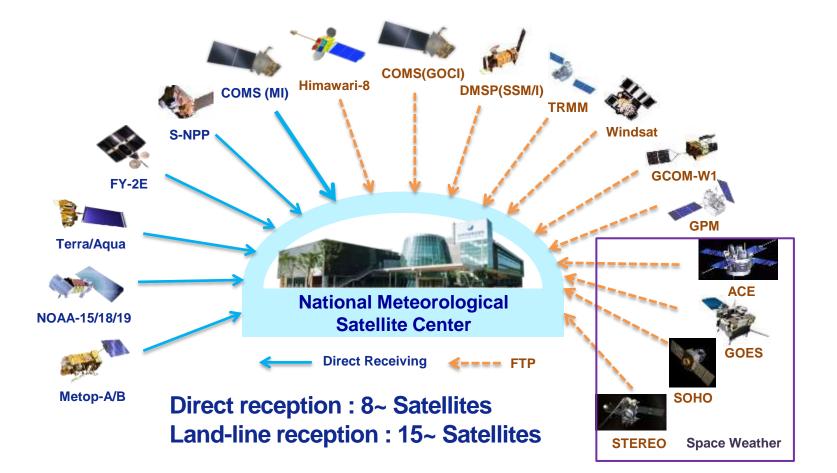
NMSC

1 Building for NMSC

- Area: 33,058m²
- Construction : 2005~2008

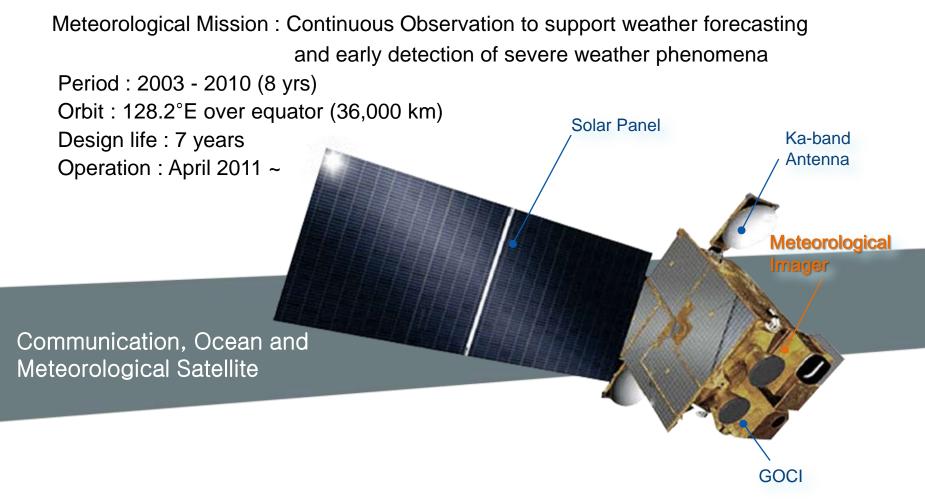
2 Organization & Personnel

 3 divisions & 1 Team (Satellite Planning, Satellite Operation, Satellite Analysis
 division + Satellite Development team)
 with more than 120 staffs and researchers

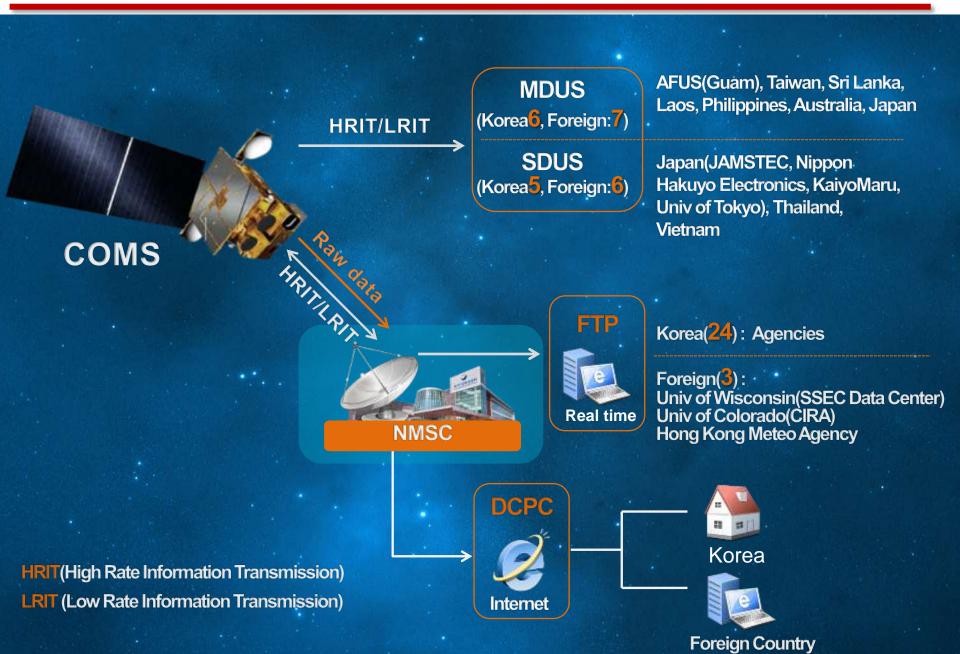

3 Major duties

- Meteorological Satellite Development & Operation
- Satellite Data Application
 Data Reception/Processing/Analysis/
 Distribution for Users
- International and Domestic Cooperation
 regarding Meteorological Satellite

NMSC Goal (I)

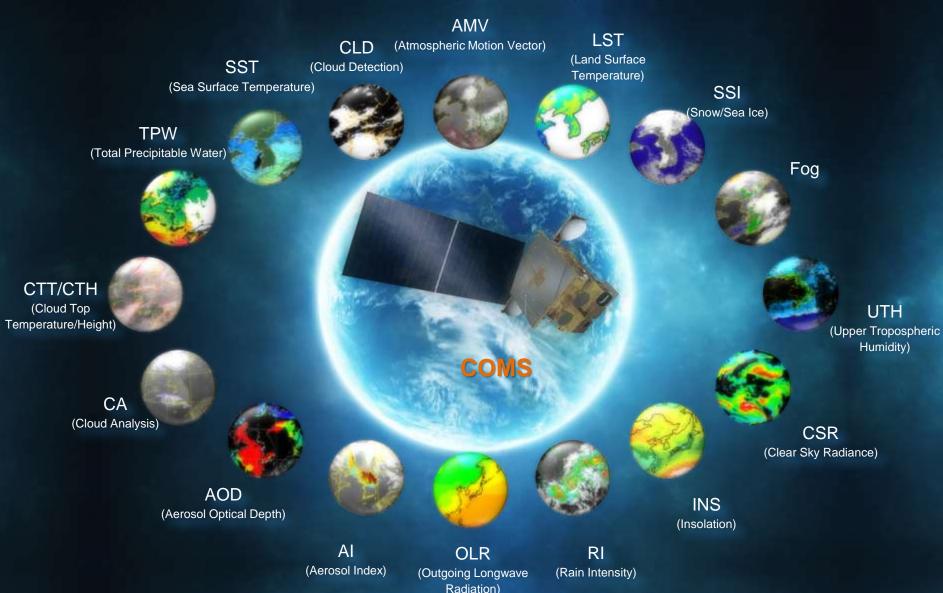

To operate timely COMS (GK-1), to gather reliable satellite data on weather and climate and to deliver them to other Agencies and countries

COMS

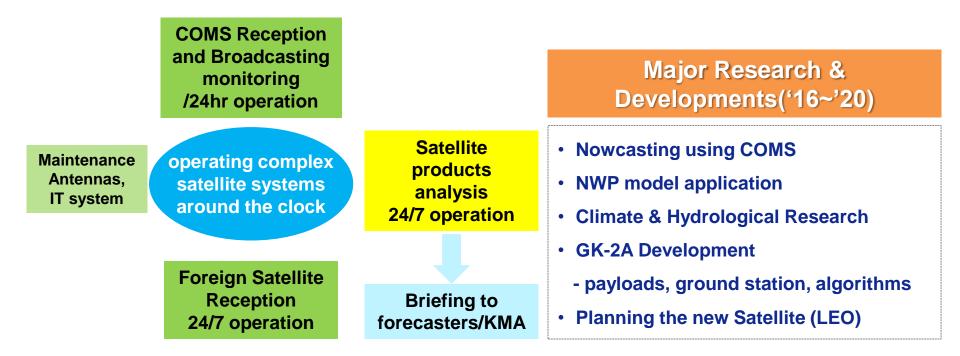


COMS(GK-1) is the first multi-purpose geostationary satellite for Korea in the application of Meteorology, Ocean and Communication

COMS Dissemination



COMS Products

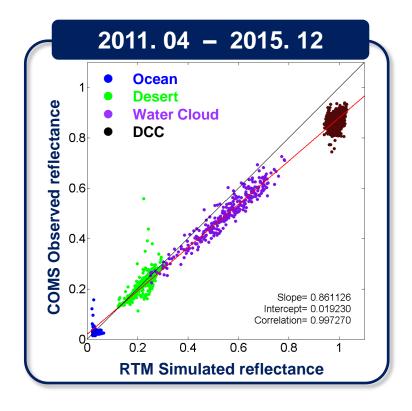

16 Baseline Products : Development (2003-2010) and operation (2011~)

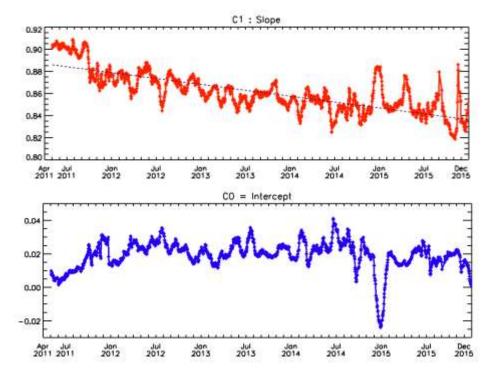
KMA

NMSC Goal (II)

 To develop a broad range of products from the satellite observations based on innovative algorithms for timely warning and support public and private decision making for our social and economic wellbeing as a science-based services agency.

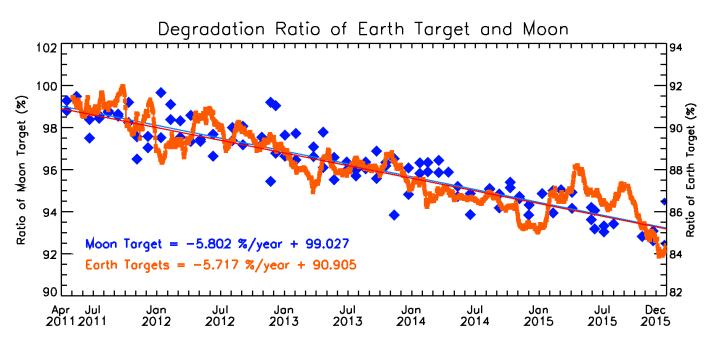
COMS Applications


Computation Sources	Applications
Cloud detection, Clear sky radiance, Rainfall intensity	Weather and numerical forecast
Atmospheric motion vector	Numerical forecast
Sea surface temperature	Numerical forecast & climate monitoring, ocean
Land surface temperature	Numerical forecast & climate monitoring
Sea Ice/Snow detection	Numerical forecast & climate monitoring, Asian dust prediction
Insolation	Agricultural meteorology, climate research
Upper tropospheric humidity, Total precipitable water, Cloud analysis, Cloud top temperatures & heights, Outgoing long wave radiation	Numerical forecast & climate monitoring
Fog	Aviation meteorology
Aerosol index	Asian dust forecast & environment monitoring
Aerosol optical depth	Asian dust forecast, environment monitoring, & climate research



KMA

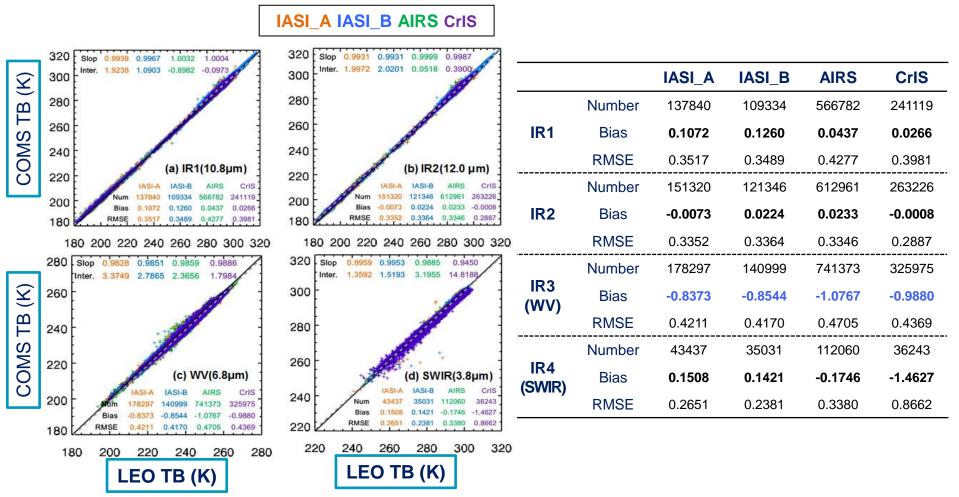
- Vicarious calibration for visible channel using 5 targets.
 - Ocean, Desert, Water Cloud, Deep Convective Cloud (DCC) and Moon
- Monitoring the **<u>slope</u>** changes from the four targets
- The slope is obtained using 30 days average.



- period: 2011.04 ~ 2015.12
- degradation: 5.717% (1.204%/year) from 4 targets on the Earth

: Desert, Ocean, Water Cloud, DCC

5.802% (1.221%/year) from the Moon targets using GIRO_V1.0.0



- Lunar calibration by collaborate with <u>EUMETSAT</u>
- DCC method by collaborated with <u>NASA</u>

Preparation for the demonstration phase for COMS IR calibration

- GEO-LEO Inter-calibration (IASI, AIRS and CrIS)
- Period : AIRS, IASI-A(April 2011 Dec. 2015), IASI-B(Aug. 2013 Dec. 2015), CrIS(Jan. 2014 Dec. 2015)

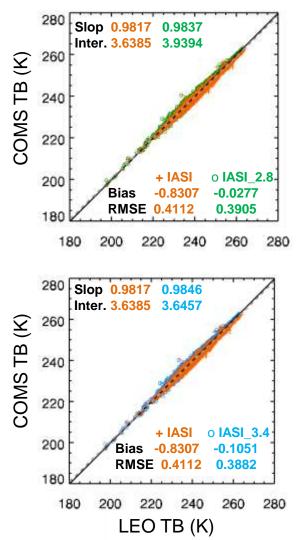
IASI WV SRF +2.8 cm⁻¹ shift Currently, check the trend of TB bias for WV For estimated shift of the SRF center position, Large **negative** bias for warm temperature match the band averaged radiance from IASI Period: Jan. 2014 - Dec. 2014 and COMS/MI radiance SRF shift : 2.79±1.73 cm⁻¹ WV(6.7µm) TB Bias(COMS-LEO) (K) Period: April. 2011 - Jan.2012 (16 different days including four seasons) IASI radiance with current WV SRF(red) and shifted WV SRF(blue) SRF shift \rightarrow +2.8 cm⁻¹ 180 200 220 280 240260 ASI Radi COMS TB (K)

< Two Methods>

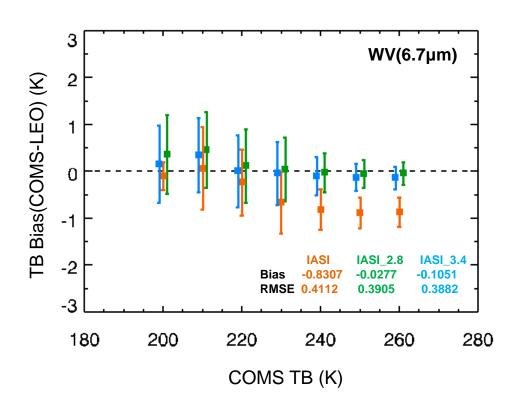
1) Original MI + IASI(SRF shifted by +2.8cm⁻¹ shift)

2) (SRF) Corrected MI + IASI(SRF shifted by +3.4cm⁻¹ shift)

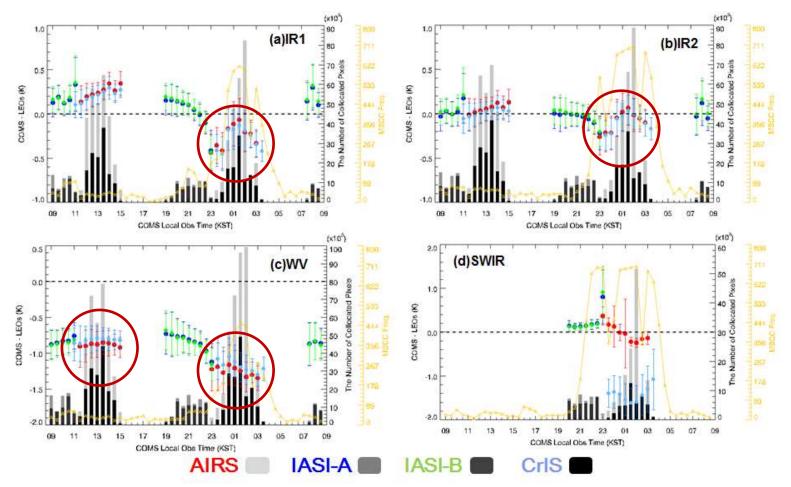
1400


1450

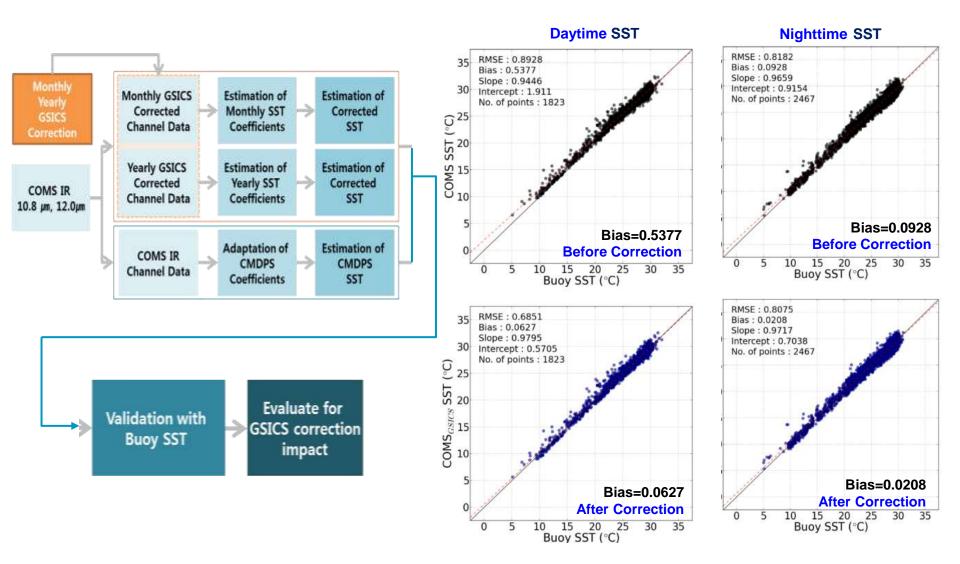
Wavenumber [cm³]


1550

- Result of IASI SRF shift and check the <u>TB bias and trend of TB bias for WVIR</u>
- Period: Jan. 01.2014 Dec.12.2014



- IASI : Original MI + Original IASI
- IASI_2.8 : Original MI + IASI SRF shifted by +2.8cm⁻¹
- IASI_3.4 : MI corrected + IASI SRF shifted by +3.4cm⁻¹



- Diurnal variation of <u>TB bias</u> (COMS-LEO)
- Period : AIRS, IASI-A(April 2011 Dec. 2015), IASI-B(Aug. 2013 Dec. 2015), CrIS(Jan. 2014 Dec. 2015)

Collaboration with NOAA/NESDIS for diurnal variation due to mid-night effect

Application of GSICS correction to SST

18

Development of New Satellites (GK-2A & LEO)

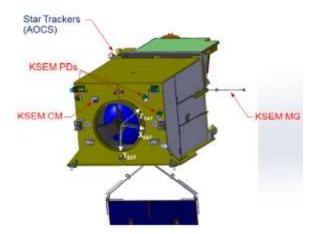
Geo-KOMPSAT-2A's Payloads 2012~2018(7years)

AMI(Advanced Meteorological Imager)

Bands		Center Wavelength		Band Widt	Resolution	GOES-R	Himawari-8
		Min(um)	Max(um)	h (Max, um)	(km)	(ABI)	(AHI)
	VIS0.4	0.431	0.479	0.075	1	0.47	0.46
	VIS0.5	0.5025	0.5175	0.0625	1		0.51
	VIS0.6	0.625	0.66	0.125	0.5	0.64	0.64
VNIR	VIS0.8	0.8495	0.8705	0.0875	1	0.865	0.86
	NIR1.3	1.373	1.383	0.03	2	1.378	
	NIR1.6	1.601	1.619	0.075	2	1.61	1.6
	NIR2.2				2	3.35	2.3
	IR3.8	3.74	3.96	0.5	2	3.90	3.9
	IR6.3	6.061	6.425	1.038	2	6.185	6.2
MWIR	IR6.9	6.89	7.01	0.5	2	6.95	7.0
	IR7.3	7.258	7.433	0.688	2	7.34	7.3
	IR8.7	8.44	8.76	0.5	2	8.50	8.6
	IR9.6	9.543	9.717	0.475	2	9.61	9.6
LWIR	IR10.5	10.25	10.61	0.875	2	10.35	10.4
	IR11.2	11.08	11.32	1.0	2	11.2	11.2
	IR12.3	12.15	12.45	1.25	2	12.3	12.3
	IR13.3	13.21	13.39	0.75	2	13.3	13.3

KSEM(Korea Space wEather Monitor)

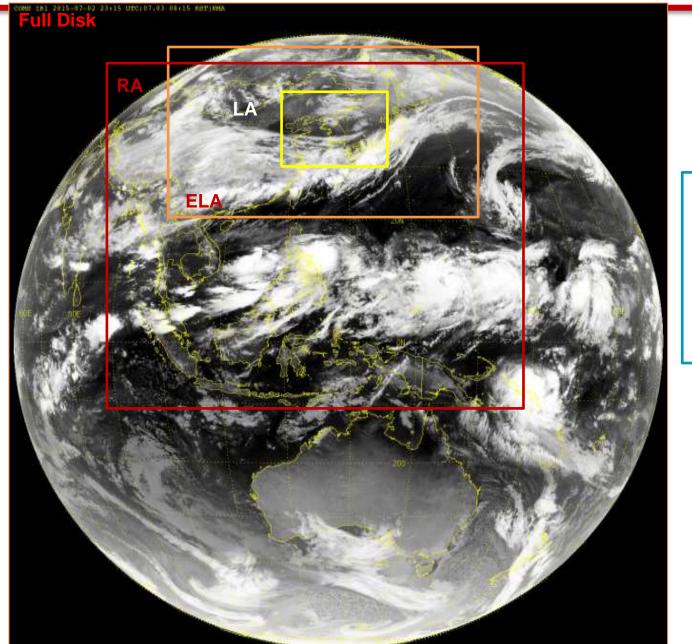
- PD : Particle Detector
- MG : Magnetometer
- CM : Charging Monitor


vs. AHI

- addition $1.38 \ \mu m$ (NIR)

- subtraction 2.3 μm (NIR)

1.38 μm : favorable for cirrus cloud detection, cloud type and amount


2.3 μ m : favorable for Land/cloud Properties

Observation Area and Schedule

1. Full Disk
2. RA 6200x5900km
3. ELA 3800x2900km
4. LA 1000x1000km

Detailed 52 Meteorological Products

Scene & Surface Analysis (13)	Cloud & Precipitation (14)	Aerosol & Radiation (14)	Atmospheric condition & Aviation (11)	
Cloud detection	Cloud Top Temperature	Aerosol Detection	Atmospheric Motion Vector	
Snow Cover	Cloud Top Pressure	Aerosol Optical Depth	Vertical Temperature Profile	
Sea Ice Cover	Cloud Top Height	Asian Dust Detection	Vertical Moisture Profile	
Fog	Cloud Type	Asian Dust Optical Depth	Stability Index	
Sea Surface Temperature	Cloud Phase	Aerosol Particle Size	Total Precipitable Water	
Land Surface Temperature	and Surface Temperature Cloud Amount		Tropopause Folding Turbulence	
Surface Emissivity	Cloud Optical Depth	Visibility	Total Ozone	
Surface Albedo	Cloud Effective Radius	Radiances	SO ₂ Detection	
Fire Detection	Cloud Liquid Water Path	Downward SW Radiation (SFC)	Convective Initiation	
Vegetation Index	Cloud Ice Water Path	Reflected SW Radiation (TOA)	Overshooting Top Detection	
Vegetation Green Fraction	etation Green Fraction Cloud Layer/Height		Aircraft Icing	
Snow Depth	Rainfall Rate	Upward LW Radiation (TOA)		
Current	Current Rainfall Potential			
	Probability of Rainfall	Upward LW Radiation (SFC)		

Blue: Primary Products

Black: Secondary/ancillary

Operational Application using Satellite Products

• To be designed to maximize the utilization of the satellite products for forecasters and NWP

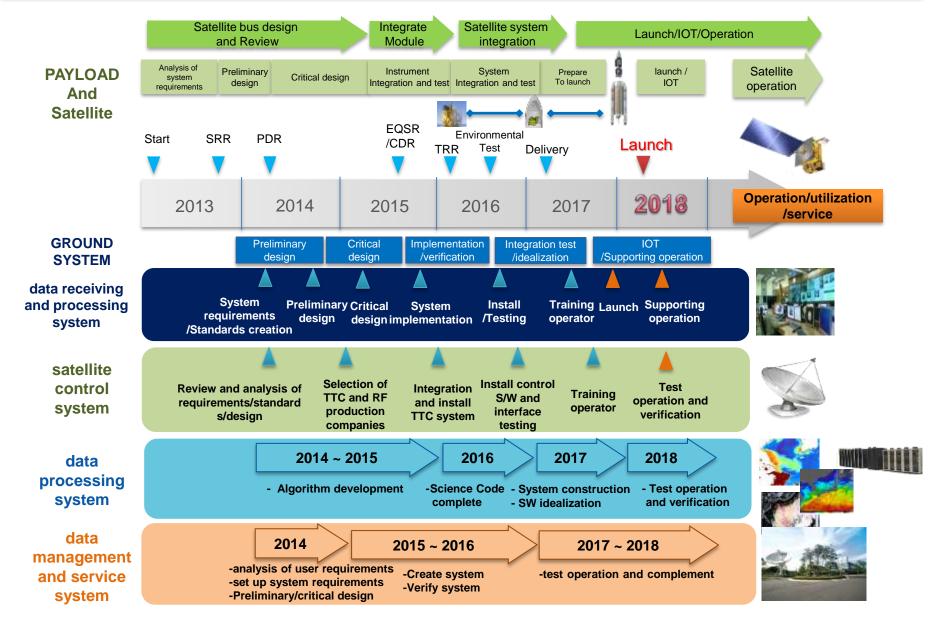
 Recommended using GK-2A and the other satellite data, if necessary NWP and the other ground observation

Areas	Contents	
Nowcasting	 Cloud analysis Heavy rainfall and snowfall analysis QPF 	
Typhoon & Ocean	Typhoon analysis system based on Satellite SST, red tide, freezing over the ocean 3D Winds analysis	
NWP	Satellite data preprocess for NWP assimilation	
Hydrology & SFC & Verification	Soil moisture, Drought and Floods, Fire Fine Dust analysis Verification, grid and image composite technique	
Climate &Aerosol concentration, height, vertical distributionEnvironmental MonitoringGreenhouse gases, atmospheric compositionEnergy budget, Air Quality model applications		

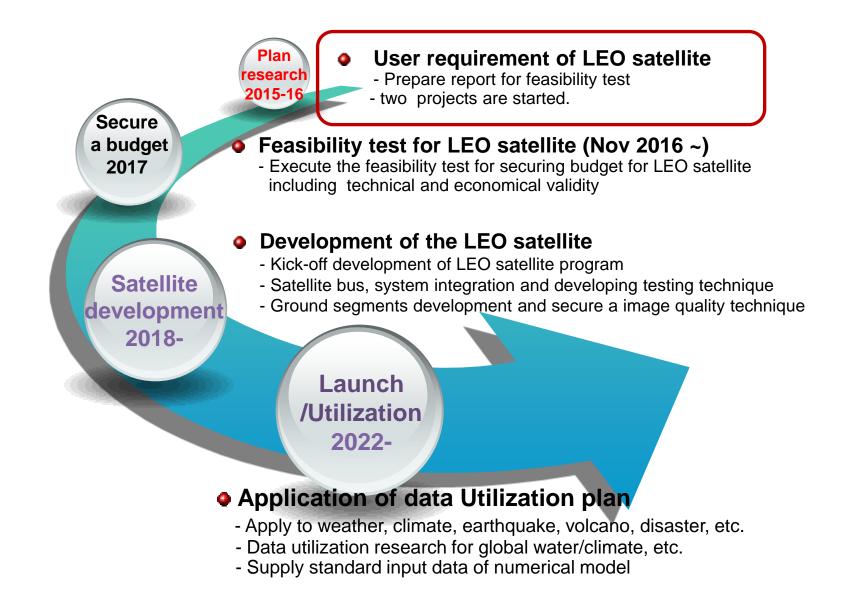
Data Service Plan : GK-2A

[Via GK-2A broadcast]

- Broadcast all 16 channels data (UHRIT) of meteorological observations
- Maintain L/HRIT broadcast corresponding to COMS five channels


Categories	UHRIT	COMS-like H/LRIT		
Service	υπκιι	HRIT	LRIT	
Data Rate	<u><</u> 31 Mbps	3 Mbps	~512 Kbps	
Frequencies	Uplink : S-band Downlink : X-band	Uplink : S-band , Downlink : L-band * Same Frequencies band with COMS		
Data Type	AMI Image(16 Ch.) Alphanumeric text Encryption Key Message * Additional info could be added in the future	AMI Image(5 Ch.) Alphanumeric text Encryption Key Message GOCI-II products(TBD)	AMI Image (5 Ch.) Alphanumeric text Encryption Key Message Lv2 products GOCI-II image file	
Mode	FD	FD	FD	
Station	LDUS	MDUS	SDUS	

[Via Landline]


- Cloud service similar to Himawaricloud is under development (completed in 2018)
- Renovated web-based service system is under development (completed in 2018)
- GK-2A data also will be available in DCPC-NMSC (http://dcpc.nmsc.kma.go.kr)

Milestone for the GK-2A

Future LEO Satellites for Meteorological Use

Preparing Future LEO Satellites

- Development (plan) : ~ 2022 (or earlier)
- Altitude/orbit : 500~900km / Sun-synchronous (TBD), dawn-dusk orbit
- Satellite : ~500kg, instrument : ~150kg
- Possible Instrument : MW Sounder such as ATMS, AMSU, SSMI
 - : CrIS with limited channels
 - : GPM MW Imager
 - ~ one or two instrument due to the weight of payloads(~150kg)
 - ~ instrument type will be decided for feasibility test
- International cooperation / joint development for payload and sensors

THANK YOU!