EU H2020 Copernicus Cal/Val Solution CCVS

CCVS

Reported by Jean-Christopher Lambert (BIRA-IASB) to CEOS WGCV-51 Tokyo, 3-6 October 2022

Scope of the CCVS project

CCVS

Objective:

Contact us:

To define a holistic solution for all Copernicus Sentinel missions (either operational or planned) to overcome current limitations of Calibration and Validation (Cal/Val) activities.

JRC 🔜 N 🔅 R C E rayference 🙏 ThalesAlenia

Project duration: Dec. 2020 to Nov. 2022

contact@ccvs.eu

Project website: <u>https://ccvs.eu</u>

Sentinel Cal/Val Requirements

WP 1 Sentinel Cal/val Requirements

CCVS

T1.1 Optical Missions

T1.2 Altimetry missions

T1.3 Radar and Micro-wave imaging missions

T1.4 Atmospheric composition missions

Listing all Sentinel L1 and L2 products (current and foreseen)

sentinel-sp

Establish calibration and validation needs for all Sentinel L1 and L2 data products

sentinel-z

sentinel-3

✓ Series of reports available via project website https://ccvs.eu

sentinel-

Existing Cal/Val Sources, Methods and Services

WP 2 Existing Cal/Val sources

T2.1 On-board calibration

T2.2 Vicarious methods on natural targets

T2.3 Inter-satellite comparisons

T2.4 Systematic ground-based measurements

T2.5 Field and aerial campaigns

T2.6 Cal/Val data distribution services

- Identify currently available Calibration and Validation sources
- Establish constraints and limitations affecting these sources (technical and operational)
- Identify perspectives on methods and emerging technologies

 ✓ Series of reports available via project website <u>https://ccvs.eu</u>

Gap Analysis & Cal/Val Solution

WP 3 Gap Analysis and Copernicus Cal/Val solution

> T3.1 Instrumentation technologies

T3.2 Cal/val Methods

T3.3 Measurement networks and supersites

> T3.4 Data distribution

T3.5 Performance analysis and Level 3 impact

> T3.6 Copernicus Cal/val Solution

- Identify gaps in the current Cal/Val of Sentinel missions
- Identify synergies and cross-Sentinel harmonisation needs
- Define a network of core operational sites for the Sentinel missions
- Define an operational organization and procedures for the cal/val activities of the Sentinel missions (data curation and distribution)
- Analyse expected impact on uncertainty of Sentinel products and downstream products (including Level-3)

DELIVERABLES

CCVS deliverables

CCVS

https://ccvs.eu

Ref.	Deliverable	Due Date	Description
D1.1	Optical Missions Cal/Val Requirements	June 2021	Collection of Cal/Val requirements for the operational optical sensors (Sentinel-3 OLCI/SLSTR/SYNERGY, Sentinel-2) and the future optical missions (CHIME, LSTM)
D1.2	Altimetry Missions Cal/Val Requirements	June 2021	Collection of Cal/Val requirements for the operational altimetry sensors (Sentinel-3 SRAL, Sentinel-6) and the future altimetry mission (CRISTAL)
D1.3	Radar and passive Microwave Missions Cal/Val Requirements	June 2021	Collection of Cal/Val requirements for the operational radar missions (Sentinel-1) and the future radar and passive microwave missions (ROSE-L, CIMR)
D1.4	Atmospheric Composition Missions Cal/Val Requirements	June 2021	Collection of Cal/Val requirements for the operational atmospheric composition missions (Sentinel-4, Sentinel-5) and the future atmospheric composition mission (CO2M)
D2.1	On-Board Calibration Sources	June 2021	List of existing on-board calibration devices used for Sentinel missions and foreseen for future High Priority Copernicus Missions
D2.2	Vicarious Methods on Natural Targets	June 2021	List calibration methods based on observation of natural sites/targets (including Moon, Sun and stars)
D2.3	Inter-Satellite Comparison Methods	June 2021	Identify inter-satellite comparison methods (including SNO, tandem) and their current used for Sentinel missions. Identification of emerging methods and approaches
D2.4	Systematic Ground-Based Measurement Sites and Networks	June 2021	Survey of instrumented sites and networks (including drifters) acquiring measurements in a systematic manner, in Europe and worldwide
D2.5	Field and Aerial Campaigns	June 2021	Survey of field and airborne capaigns, in Europe and worldwide
D2.6	Cal/Val Data Distribution Services	June 2021	Survey existing Cal/Val data distribution services and portals and their current use and perspective for the Copernicus program
D3.1	Recommendations for R&D activities on instrumentation technologies	September 2022	
D3.2	Recommendations for R&D activities on Cal/Val methods	September 2022	

Reference Scenario for Implementation

- Define a way forward for the implementation of the Copernicus Cal/Val solution
- Establish roles and responsibilities among Copernicus stakeholders
- Analyse sustainability and identify funding gaps
- Define implementation schedule

Involvement of Space Agencies

CCVS

- Agencies on Advisory Board, progress meetings, review of deliverables
- CCVS presentations at WGCV meetings and EO focused conferences
- Participation of space agencies in major CCVS events
 - 1st CCVS workshop 13-15 October 2021
 - 2nd CCVS workshop "In-Situ" 9-11 May 2022
 - Space agencies WG meeting 27 July 2022

List of recommendations for EO domains and cross-missions as

- > Actions, e.g., on calibration activities/operations, on documentation...
- R&D activities, e.g., efforts to be continued/re-inforced
- > General and specific needs for reference data with uncertainty estimates
- > Challenges to be addressed for the Cal/Val of future missions
- > Organization and coordination aspects

WGCV Relevant Highlights

CCVS

Uncertainty estimates for Copernicus data products

- Methodologies for assessment of prognostics uncertainties need consolidation, harmonization and generalization
- Uncertainty propagation needed through the entire processing chain, including L3 and L4 Copernicus services products ideally
- Training / education on state-of-the-art expression and calculation of uncertainties

Copernicus Cal/Val Data Service

 CCVS would see a benefit for a coordination body at Copernicus level to oversee the collection and distribution of Cal/Val data for Sentinel and Copernicus services products

✓ In coordination with ESA – EUMETSAT and CEOS WGCV and with in-situ data providers

WGCV Relevant Highlights

CCVS

Labelling of FRM sites

- CCVS recommends a "certification" mechanism for reference measurements.
- FRM-maturity evaluation based on self assessment and reporting
- Ideally an FRM-maturity level with several stages
- CEOS WGCV would be in the best position to deliver this "certification" and guidelines for further evolution towards FRM status where needed.

Campaign coordination

- Announcement of future campaigns (at CEOS level) to foster cooperation
- Formatting and archiving of Cal/Val campaign data

Cross-mission Cal/Val activities

R&D to explore feasibility/usefulness, e.g., wave SAR/altimetry intercomparison

* Need for an altimetry inter-calibration forum incl. Chinese and Indian agencies

WGCV Relevant Highlights

CCVS

State-of-the-art/advanced validation methods

- R&D to mature and advance validation methods and fill in identified gaps
- Training / education on advanced validation methods

Validation reporting

Cross-agencies harmonization of reporting approaches beneficial for users.

Specific recommendations by EO thematic domain

- ✓ See details in deliverables on https://ccvs.eu for
 - OpticalAltimetryOrbit validationOcean/sea state, topographyAtmospheric compositionSAR and microwave imaging
- Special Issue of MDPI Remote Sensing

https://www.mdpi.com/journal/remotesensing/special_issues/J3CYH3OQV0

