WGCV-53

Terrain Mapping Subgroup (TMSG) status, DEMIX Final Report, & Outlook

Agenda Item 1.9

WGCV-53, Córdoba, Argentina

5th - 8th March 2024

Proceedings of the Terrain Mapping SubGroup (TMSG)

- Re-activated early 2020
- as of Feb 29th 2024:
 - 65 subscriptions (+/-1)
 - o 15 countries
 - \circ ~50% with CEOS background
 - ~30% Geomorphometry.org
 - ~25-30 have actively contributed to the intercomparison exercise DEMIX (incl. industry!)
- main (only) activity still is was DEMIX
- (hybrid) DEMIX workshop & TMSG plenary scheduled for held 12/13 July 2023, supported by ESA

Subscription page: <u>https://ec.europa.eu/eusurvey/runner/WGCV-TMSG_membership</u>

TMSG/DEMIX@Geomorphometry23

Wednesday 12 July: **DEMIX** workshop

Thursday 13 July: **TMSG** plenary

Description

tour de table (online in alphabetical order)

Potential future activities (working titles):

Discussion and decision on next steps

wrap-up and status of activities (DEMIX) 5 min

feed-back from the audience, responses from a

GCPIX: intercomparison of GCP libraries

welcome

CEOS DEMIX

For proceedings see the Geomorphometry23 web page: https://geomorphometry.org/geomorphometry2023/

WGCV-53. 5-8 March 2024

Time (UTC) #

07:00-07:05 1

07:05-07:20 2

07:20-07:25 3

07:25-07:40 4

07:40-07:55 5a

07:55-08:10 5b

08:10-08:25 5c

08:25-08:40 6

TMSG/DEMIX@VH-RODA

15:40 - 17:00	Digital Elevation Models (DEM)	Chair: Peter Strobl (EC-JRC) / Clement Albinet (ESA)
15:40 - 16:00	Results from the Digital Elevation Model Intercomparison eXercise (DEMIX) Abstract Presentation	Peter Strobl (EC-JRC)
16:00 - 16:20	Planimetric Misregistration Assessment between DEMs Abstract Presentation	Serge Riazanoff (Visioterra)

14:00 - 15:20	Fiducial Reference Measurements (FRM)	Chair: Sam Hunt (NPL) / Kevin Alonso (RHEA for ESA)
15:00 - 15:20	GCPIX: a Proposal to Orchestrate GCP (Ground Control Point) Collection for Global Satellite Earth Observation Abstract Presentation	Cody Anderson (USGS EROS)/ Peter <mark>Strobl</mark> (EC- JRC)

FRM session on 28/11/2023

- Presented first concept for GCPIX
- DEM session on 29/11/2023
 - Two contributions from DEMIX

For abstract and presentations see VH-RODA web site: https://earth.esa.int/eogateway/events/vh-roda/agenda#collapseFour

WGCV-53, 5-8 March 2024

DEMIX Results

DEMIX – the origins

Findings of the JRC DEM benchmarking workshop (Jan 2019):

- Situation in 2019 new data sets are coming up ("Copernicus DEM"), which might change the DEM 'landscape'
- * EO platforms and 'data cubes' make data increasingly available also at **continental to** global scales
- Iterature is rich in **DEM validation and comparisons** of (almost) everything with everything else in many different places
- methodologies vary and results are not always representative or comparable between studies and locations
- a coordinated approach is desirable!
- bring CEOS TMSG and the International Society for Geomorphometry (ISG) together!

DEMIX Scope

CEOS WGCV mandate for DEMIX:

- \blacktriangleright perform a state-of-the-art comparison of the major global (free&open) DEMs
- provide recommendations on best available DEM options depending on decision in 2020 domain and area to allow informed choices

Expected Outcomes

- Consistent and comprehensive DEM definitions and terminology (t)
- Base (t) and extended (g) set of benchmarking metrics and respective algorithms (t) and open source tools (g)
- Detailed comparison results on test areas (t) and aggregated wall to wall benchmarking results (g)
- Recommendations regarding reference DEMs (t) and consistent orthoimage (g)
- Final report (t) and peer-reviewed publication (g)

(t) threshold; (g) goal

DEMIX outcome

after

- 3 years,
- 3 plenaries,
- Teams groups
- 3 subgroups, each with 5-15 active members,
- 130+ subgroup meetings, each with at least 4 participants
- a <u>conference paper</u> and <u>video</u>,
- 3 peer-reviewed publications,
- a new '<u>DEMIX tiling</u>' system,
- a processing platform, …

we are almost there...

Terminology

Revised terminology and developed comprehensive definitions (glossary) Peer reviewed paper published, 53 citations as of 02/2024: <u>Guth et. al. 2021</u>

A cation of topographic profiles

Profiles - Pixel is Area

WGCV-53, 5-8 March 2024

Preparatory and support activities

- Global master grid ('DEMIX-tiles') implemented
- Extensive study on influence of resampling on planimetric misregistration Differences between resampled and original slope histograms
- Reference DEM repository and DEMIX test tile hanks for vtweb & ESA support

WGCV-53. 5-8 March 2024

Mountainous area(N46PE010J, Italy) Differences of DEM slope histograms (resampled - original, smoothed)

	30 m	DSM	v2.1 (date not found)
East of Provincia de Buenos Aires)	depend on tile	DTM	Not found
of multiple provinces)	0.5 m	DTM	Not found
of multiple provinces)	0.5 m	DSM	Not found
	1.5 m	DTM	2021
	1.5 m	DSM	2021
nto)	2 m	DSM	(26.04.2021)
nto)	2 m	DTM	(26.04.2021)
alities of the Rio Doce Basin Committee)	0.5 m (in GeoTIFF)	DSM	(26.05.2021)
ill state)	1 m	DSM	Not found
Il state)	1 m	DTM	Not found
	-	-	(2002)
ce of Trento	1 m (type 1), 2 m (type 2, 3)	DSM	Not found
e of Trento	1 m (type 1), 2 m (type 2, 3)	DTM	Not found
e of Trento (Campolongo only)	1 m	DSM	Not found
of Trento (Campolongo only)	1 m	DTM	Not found
of Trento (without Campolongo)	0.5 m	DBM (DTM + Buildings)	Not found
of Trento (without Campolongo)	0.5 m	DSM	Not found
f Trento (without Campolongo)	0.5 m	DSM	Not found
f Trento (without Campolongo)	0.5 m	DTM	Not found
	1 m	DTM	(17.02.2015)
	1 m	DSM	(17.02.2015)
	1 m	DTM	(2020)
	1 m	DSM	(2020)
	1 m	DSM	(2020)
	10 m	DSM ?	(2007)
	1 m	DTM	25.09.2022
	1 m	DSM	24.09.2022

Slide 10

DEMIX 'wine contest'

WGCV-53, 5-8 March 2024

DEMIX test area distribution

- 24 test areas, 236 DEMIX tiles (10x10km²) on four different continents with reference data
- Reference data preparation tool
- All major geomorphological landforms and landcover types represented incl. coastal areas (partial water)
- 15 different criteria in 3 classes
- Pixel by pixel comparison against reference data
- >55.000 individual test scenarios (rows in opinions database)

Courtesy: C. Grohman

DEMIX test area variability

WGCV-53, 5-8 March 2024

DEMIX test criteria

- 3 main classes of criteria: elevation, slope, and roughness difference
- 5 different metrics to characterise difference per test area: AVD, STD, RMSE, MAE, LE90

b) SRTM elevation difference to Reference DTM b) SRTM elevation difference to Reference DTM b) SrtM seguive Diff. 1.5m c) Solvi We biff. 1.5m c) Solvi We b

E) SRTM slope difference to Reference DTM

5km.

F) SRTM roughness difference to Reference DTM

... and the winner is:

WGCV-53. 5-8 March 2024

Job done!

WGCV-53. 5-8 March 2024

DEMIX Outlook

In the meantime

Further criteria:

- Hillshade
- Wetness index
- New metrics:
 - FUV (fraction unexplained variance, 1-r²)
- More test areas:
 - 107 test areas in the USA, ES, CA, BR, UY, FR, UK, NO, NL, DK
 - 1700+ tiles

WGCV-53, 5-8 March 2024

Focus in on single tile

canyon range

39.15

-112.35

0.104251

0.10731

0.160949

0.539178

- ALOS is significantly worse
- NASADEM did not improve on SRTM (or change it much), and neither performs very well
 DEMIX TILE N39PW113H

ASTER fails AREA LAT

> NASA 0.806989 SRTM 0.800862 ASTER 0.960294

LONG

TANDEM

FABDEM

ALOS

COP

-1625

167

1625

1625

Up to new shores?

- Coastal areas globally are witness to growing disaster risks.
- The elevation/area around "Coastlines" are the interface between land and water (+/- 10m depth/height)
- Detailed elevation models are required to estimate tide areas (sea level rise), emergency (tsunami), environment (e.g. loss of biodiversity), inhabitants impact (e.g. urban development)
- Objective: to {create/test} a global coastal elevation dataset/{method}
 Source: Tidal Datums https://www.oc.nps.edu/nom/day1/tidal_datums_fig17.gif

DATUMS

GCPIX Outlook

Community **recommendation** from the key forums **"VH-RODA"** and **"JACIE"**

Build up a GCP DB for the VHR domain

CEOS WGCV welcomed and closely followed the **Sentinel-2 Global Reference Image (GRI)** and **harmonization** with **Landsat GCP Library** which can serve as a **reference for high resolution (HR)** sensors (around 10 m – 50m GSD)

CEOS is now **proposing** the development of a **harmonised global CEOS Ground Control Points (GCP) Database** and its extension **to cover also VHR Optical Data** [2.5-10m GSD, and **potentially** <2.5m GSD]

CEOS agencies are pooling activities and resources towards a unified and **harmonized CEOS GCP Database** for HR&VHR Optical Data

<u>GCPIX!</u>

A. Lewis, L.-W. Wang, R. Coghlan, AGRI: The Australian Geographic Reference Image, <u>https://cmi.ga.gov.au/sites/default/files/2020-</u>08/agri_report.pdf

S. Saunier, S. Kocaman, C. Albinet, P. Goryl, "Development of a GCP Database Approach for Geometric Cal/Val of VHR Optical Imagery" Check out S. Saunier's poster!

VH-RODA 2023 Workshop 27 – 30 November 2023 | ESA – ESRIN | Frascati (RM), Italy

chip.bmp

A. Lewis, I <u>08/agri_re</u> Used by the License: C National **n** UTM zone 91412002_image_ Ground C Ground Co Absolute ALOS ima

91412004_image_ chip.bmp

91412070_image_ chip.bmp

91412078_image_ chip.bmp

91412079_image_ chip.bmp

91412503_image_ chip.bmp

- Key elements to be further developed during GCPIX
 - define criteria for the suitability of GCPs (by resolution, season, wavelength, ...) and respective uncertainties, spatial density and distribution requirements
 - establish protocols and formats for documenting and sharing GCPs and respective libraries
 - harmonization of existing sources from the different CEOS agencies towards a unified DB
 - identification of gaps/weaknesses in coverage, consistency, quality, availability,
 - design and set-up of a (cloud-based) platform for sharing and managing the database
 - improvement, densification, and allocation of additional source data (VHR)
 - potential inclusion of DEM data/reference chips from suitable and agreed reference data

Exkursion: CEOS Common Terminology

In-situ disambiguation

In-situ / Ex-situ

Observed in its original location vs brought back to laboratory for testing

In-situ / satellite

Observed e.g. groundbased, sea- or airborne vs from an orbiting platform

Distance sensor to sample VS

In-situ / remote

Observed close to the location of the sample vs from a (significant) Various communities use the term 'in-situ' in different ways – in contrast to different alternatives.

It is very important to be clear about which notion of 'in-situ' is referred to. Sometimes it relates more to location and sometimes to fidelity.

Paper methodology

- Review of 12 existing vocabularies / terminologies
 - Assessment of useability
 - Identification of circular definitions and inconsistencies
 - Assessment of structure
- Review of ISO guidelines on 'information and documentation: thesauri and interoperability with other vocabularies) ISO 25964
- Presentations to CEOS, ESA and WMO meetings
- Detailed study of some sample terms
 - Observation, in-situ, interoperability
 - As examples of broader problems
- Building a hierarchical set of base and core terms

- Simple lists of words are not used often structure is important
- Rare to have versioning (or keep older definitions) and definitions change
- Very large number of definitions for some terms e.g. in ISO online browsing platform
- Inconsistent definitions (e.g. in-situ, observation, sample, …)
- Superficial definitions (e.g. interoperability) lacking full framework
- Circular definitions and poor use of the foundational 'base terms'
- Development process isolated efforts creates these problems

Lost in translation: The need for common vocabularies and an interoperable thesaurus in Earth sciences

P.A. Strobl¹, E.R. Woolliams² and K. Molch³ ¹JRC, ²NPL, ³DLR

- First draft (July 2023) reviewed by 12 expert individuals (thank you)
 - Very significant changes made based on their responses
- Final draft submitted to Surveys in Geophysics (December 2023)
- Currently waiting for peer reviewer comments
- Pre-print available at : (TBC)

Executive Summary

- Completed work to explore a CEOS common online dictionary (CEOS WGCV Action Item 49-06, 06/2021)
- Results summarized in a publication preprint pending
- Main Findings
 - Large interest in the topic; need, urgency, and effort are recognized
 - Many good but isolated dictionaries exist
 - Critical: Fundamental terms often defined inconsistently
- Implementation needs a coordinated effort endorsed by all stakeholders
- CEOS with its Interoperability Framework could be a suitable body to put this in place

Evo thanks to all active volumeers! Thank you!

and camos toper vitra the view constrain and for their support! any questions? Peter.Strobl@ec.europa.eu

Committee on Earth Observation Satellites