Report on ISRO Cal/Val activities

Santhi Sree Basavaraju, ISRO Agenda Item #3.10 WGCV-53, Córdoba, Argentina 5th - 8th March 2024

Earth Observation Satellites

Outline of the presentation

- 1. Radiometric calibration status
- EOS-6
- Resourcesat-2A
- High resolution sensors characterization
- INSAT-3D vs INSAT-3DR
- EOS-4

2. Readiness for NISAR

- ASAR Data
- NOVASAR Data
- ALOS Data

3. ISRO-ASI project

Recent Operationalized EOS-6

EOS-06 (Oceansat-3)

Launch date: 26 Nov 2022 Orbit: SSPO Altitude: 740km

Payloads on EOS-06 are :

- Ku-band Scatterometer (SCAT-3)
- 13-band Ocean Colour Monitor (OCM-3)
- 2-band Sea Surface Temperature Monitor (SSTM)
- ARGOS by CNES French Space Agency

OCM-3 payload Electro-Optical Flight Module

Ocean Color Monitor-3

OCM-1 (CWL)	OCM-2 (CWL)	OCM-3 (CWL)	P	arameter	OCM-1 and 2	OCM-3			
B1 – 412 nm	B1 – 412 nm	B1 – 412 nm	N	lumber of	8	13			
B2 – 443 nm	B2 – 443 nm	B2 – 443 nm	Spe	Spectral	20 (Application Bands)	20/10/8 (Application	n Bands)		
B3 – 490 nm	B3 – 490 nm	B3 – 490 nm	R	esolution	40 (Atmospheric	20/40 (Atmospl	neric		
B4 – 510 nm	B4 – 510 nm	B4 – 510 nm	(bar	ndwidth nm)	correction bands)	correction ban	ids)		
B5 – 555 nm	B5 – 555 nm	B5 – 555 nm	SNR	(at sea ref.)	300	650			
B6 – 670 nm	B6 – 620 nm	B6 – 566 nm	-						
B7 – 765 nm	B7 – 740 nm	B7 – 620 nm			Major specification	s			
B8 – 865 nm	B8 – 865 nm	B8 – 670 nm		Spectral B	ands: 13				
		B9 – 681 nm		 Field of View Swath cov 	ew: ± 43.5 Deg /erage: >1440 km @nadir				
		B10 – 710 nm		Local Area	a Coverage (LAC) GSD: 3	866m @nadir			
		B11 – 780 nm		 Global Area Coverage (GAC) GSD: 1080m @ nadir Levels of products: Level-1, 2 and 3 					
		B12 – 870 nm		 LAC produ GAC produ 	uct bit depth: 12 bits				
		B13 – 1010 nm		Repeativit	y: 13 days				
				Revisit: 2	days				

*B stands for Spectral Band

Products are available for free download: https://bhoonidhi.nrsc.gov.in/bhoonidhi/index.html

Vicarious Calibration of OCM3

Sites for vicarious calibration of OCM3

- The MoBY and Kavaratti observations (December 2022 May 2023) were used to ascertain the OCM3 radiometric performance.
- ✤ The first ocean Vcal has been generated using these data sets.
- The observations from Cal-Val cruises, MoBY observations are further used to strengthen the matchups data sets.

In the water OCM3 rad response is in close agreement with the ground measurements

Validity of TOA radiance after 1st Vcal implementation in operational chain

Second lunar calibration (7-Jan-2023)

Bandwise mean coefficients (7th Jan. 2023)

1.03

1.05

1.06

1.01

1.03

1.29

Average Vicarious Calibration Gain (June – August 2023)

0.94

0.93

0.99

0.98

0.99

0.91

B1	1.00	B8
B2	0.94	B9
B3	0.93	B10
B4	0.91	B11
B5	0.89	B12
B6	0.98	B13
B7	0.96	

Validation results are consistent

B1	1.04	B8
B2	1.06	B9
B3	1.09	B10
B4	1.09	B11
B5	1.00	B12
B6	1.00	B13
B7	1.03	

OCM-3 observations over RVUS

RVUS site as imaged by OCM3 on 1st Jul 2023. 3kmx3km area was used for calibration which corresponds to 3x3 pixel in GAC Image Site: Rail Road Valley Playa, Nevada, USA

Geocoordinates: 38.504°N, 115.692°W

ROI: 1km * 1km >> 3*3 GAC pixels

- Calibration Ratio calculated using 18 cloud free observations of OCM3 data from May'23 to Jul'23.
- ✓ Only observation with view angle <35 considered for analysis

Calibration Ratio

$$Ratio = \frac{\rho_{TOA_OCM3}}{\rho_{TOA RadCalNet}}$$

Consistent response observed after reprocessing

Resourcesat-2A

High resolution sensors characterization

Artificial targets for spatial characterization

Bar Target in Cartosat-2S (MX) image

@ IMGEOS Realised High resolution ed targets, @ ,NRSC,ISRO. customized Complex,

INSAT-3D and INSAT-3DR

INTERNATIONAL JOURNAL OF REMOTE SENSING 2023, VOL. 44, NO. 20, 6298–6328 https://doi.org/10.1080/01431161.2023.2265541

Check for updates

RESEARCH ARTICLE

Towards Accurate Radiometric Calibration of INSAT-3D and INSAT-3DR IMAGER: Addressing Uncertainty and Error Sources

Nandkishor Kumawat (^{a,b}, K. N. Babu^a, Mehul R. Pandya^{a,b}, Saurabh Tripathi^a and V. Sathiyamoorthy^c

Summary of radiometric calibration results of the IMAGER bands

			I	NSAT-3D)		1 <u>6</u>	IN	SAT-3D	R	
Band	Date	L _{measu}	Lestim	Gain	RE (%)	RMSE	L _{measu}	L _{estim}	Gain	RE (%)	RMSE
VIS	08 Feb. 2022	110.19	120.00	1.09	8.18	4.57	106.97	113.34	1.06	5.62	3.02
	09 Feb. 2022	77.20	86.42	1.12	10.67	4.18	95.20	100.87	1.06	5.62	3.05
	10 Feb. 2022	95.59	104.88	1.10	8.86	4.38	105.02	108.98	1.04	3.63	2.07
	11 Feb. 2022	103.60	113.1	1.09	8.40	4.33	110.50	115.92	1.05	4.68	2.64
SWIR	08 Feb. 2022	24.95	25.31	1.02	1.42	0.20	24.15	25.94	1.07	6.90	0.86
	09 Feb. 2022	22.44	22.57	1.01	0.58	0.17	22.69	23.53	1.04	3.57	0.44
	10 Feb. 2022	23.78	24.10	1.01	1.33	0.25	23.20	24.68	1.06	6.00	0.66
	11 Feb. 2022	25.71	25.90	101	0.73	0.19	23.77	25.14	1.06	5.45	0.63

INSAT-3D & INSAT-3DR found to be within 10% Radiometric error

EOS-4 stability

Stability of quality parameters using the corner reflectors in Shadnagar site for one year period

EOS-4 microwave imaging satellite launched by ISRO on 14-Feb- 2022

Imaging Mode	Swath in km	Off-nadir Coverage in km	Polarization	Resolution (Azi. x SI Rng.)
FRS-1	25 #20	100-650 #100-400	Single, Dual,	3m x 2m
FRS-2	25 #20	100-650 #100-400	Circular, Full	3m x 4m
MRS (8-Beam)	160 #115	100-650 #100-400		33m x 8m
CRS	223 #168	100-650 #100-400		50m x 8m
*HRS	10	100-650	Single, Dual, Circular,	1m x 2m

FRS- Fine Resolution Stripmap; MRS - Medium Resolution ScanSAR; CRS Coarse Resolution ScanSAR; HRS- High Resolution Spotlight.

On Orbit Consistency observed with respect to Geometry & Radiometry

WGCV-53, 5-8 March 2024

Readiness for NISAR mission

Extension of site to deploy newly developed corner reflectors

Deployed ISRO's indigenously developed Multi-band Active Radar Calibrator (ARC) at IMGEOS Microwave Cal-Val Site and tested functional capability in X,C and S bands using RISAT-2B Series, EOS-04 and NovaSAR successfully.

Corner reflector designed & developed for NISAR mission deployed

Size: 1.5m Shape: STH/ TTH

- Active Radar Calibrator - Square Trihedral Corner Reflector

NISAR mission pre-preparatory activities

Rosamond Corner Reflector Array in L&S airborne SAR imagery

Signal- Clutter Ratio

SCR	L ba	nd	S band	
(in dB)	HH VV		HH	VV
CR1	52.60	49.67	55.63	54.92
CR2	52.59	48.92	53.45	52.99
CR3	55.72	48.65	52.06	52.29
CR4	49.30	48.94	53.84	53.18
CR5	48.42	46.95	51.23	50.19
CR6	49.65	48.16	52.12	52.56
CR7	49.81	48.19	52.97	50.90

Envisaged computational methods for calibration parameter derivation verified using ASAR Data Results published in InGARSS-2021 Quality parameters for L-band

	L Band						
Pol	Α	zimuth			Range		
101	PSLR	ISLR	SR	PSLR	ISLR	SR	
	(dB)	(dB)	(m)	(dB)	(dB)	(m)	
HH	-27.25	-20.91	2.47	-26.04	-21.11	2.21	
VV	-28.21	-21.79	2.6	-25.99	-22.79	2.22	

Quality parameters for S-band

	S Band								
Pol	Azimuth				Range				
10.	PSLR (dB)	ISLR (dB)	SR (m)	PSLR (dB)	ISLR (dB)	SR (m)			
нн	-27.05	-20.50	2.42	-25.28	-19.70	2.23			
VV	-26.84	-19.99	2.3	-22.89	-19.70	2.2			

NISAR mission pre-preparatory activities

NOVASAR imaging over Shadnagar site

CR Type	Size	RCS (dBsqm) in S-Band
Square Trihedral	125cm	40.2
	75cm	31.326
Square Dihedral	100cm	34.563

Computational methods for calibration parameter derivation for 'S' band data were verified.

			Azimut	h	Range		
Date of Pass	ass Target Type	PSLR (dB)	ISLR (dB)	Resolution (Mts)	PSLR (dB)	ISLR (dB)	Resolution (Mts)
30-03-2021	125cm Square Tribedral	-22.87	-18.54	5.94	-23.94	-18.25	5.94
	125cm Square Trihedral	-22.84	-19.09	7.5	-22.93	-17.11	6.25
13-04-2021	75cm Square Tribedral	-21.52	-16.75	7.81	-19.58	-14.3	6.25
26-07-2021	125cm Square Trihedral	-22.24	-18.63	6.88	-21.95	-18.02	6.25

NISAR mission pre-preparatory activities

ALOS-2 PALSAR imaging over Shadnagar site

Corner Reflector	Size (m)	RCS (dBsm)	Qty	Identification
Туре				
Square Trihedral	1.25	31.947	02	STH
Square Dihedral	1.0	26.309	02	SDH

- Low background to peak ratio is observed.
- Quality parameters like PSLR, ISLR, IRW closely match with product specifications.

Figure 1 Corner reflectors detected in four bands. Top row: HH, VV, Bottom row: HV, VH.

CESS

NISAR mission pre-preparatory activities

In-house designed Corner reflector developed specifically for NISAR data calibration was deployed at Bopal and Challakere calibration sites.
 Evaluation of its response was carried out using ALOS-2 and NovaSAR image and was found to be satisfactory

EOS-04 calibration stability monitoring

- The CRs deployed at different calibration sites (Bopal, Ladakh, Antarctica, Challakere) were utilized for the monitoring of calibration stability of EOS-04 data.
- The difference between estimated RCS and the theoretical RCS for EOS-04 FRS-1 was found to be within 1.2 dB for both HH and VV.
- The phase difference was found to be well within the specified values.
- The polarimetric signatures generated using the response of the point target closely matched the ideal signatures.

Response of CR as seen in one of the analysed EOS-04, FP images

Project: Calibration of optical space borne sensors over pseudo invariant calibration sites. -- Under Progress

Empirical absolute calibration model using PRISMA

Cross calibration with SBAF generated using PRISMA

SRF: Spectral Response Function; SBAF: Spectral Band Adjustment Factor; TOA: Top of Atmosphere

ISRO-ASI project

Cross calibration of RS2A LISS-3 and Landsat-8 OLI

Calibration Ratio without RSR compensation

Date / Band	17-Jun-21	04-Aug-21	21-Sep-21	Mean
Band-2	1.0180	0.9958	1.0043	1.0060
Band-3	0.9350	0.8366	0.9214	0.8977
Band-4	0.9720	0.9119	0.9563	0.9467
Band-5	1.0012	0.9826	0.9835	0.9891

Calibration Ratio with RSR compensation

Date / Band	17-Jun-21	04-Aug-21	21-Sep-21	Mean
Band-2	1.0111	0.9890	0.9976	0.9992
Band-3	0.9458	0.8463	0.9319	0.9080
Band-4	1.0333	0.9696	1.0165	1.0065
Band-5	1.0024	0.9838	0.9848	0.9904

Radiometric response for Spectrally similar bands of RS2A-LISS3 and L8-OLI, are comparable. Published in InGARSS 2023

...... looking forward for Global collaboration towards interoperability of Data Products

CAL-VAL TEAMS:

- National Remote Sensing Center(NRSC), Hyderabad, ISRO, INDIA
- Space Application Center (SAC), Ahmadabad, ISRO, INDIA

