

Jean-Christopher Lambert, BIRA-IASB

Agenda Item 2.6

WGCV-55

8-11 July 2025

ISRO, Hyderabad, India

Terms of Reference

Approved at the 15th CEOS Plenary in November 2001, the objectives of the Atmospheric Composition Sub Group (ACSG), beyond those of the Working Group on Calibration and Validation (WGCV), are to:

- Promote international collaboration and technical exchange to ensure the efficient use and maintenance of <u>calibration/validation resources</u> required for atmospheric composition and other missions
- Verify accurate scientific products by encouraging an <u>end-to-end approach</u> to the calibration and validation of Level 1 and Level 2 data products, and any subsequent re-calibration and reprocessing using established best practice procedures
- Ensure that validation sensors are <u>calibrated to traceable national standards</u>, with documented statements of accuracy and repeatability
- Encourage interaction between calibration scientists and <u>data users</u> to enable a better understanding of data uncertainties and user requirements
- Recommend a <u>network of validation sites</u> and to encourage continuous observation and quality control
 of data through the use of standard procedures and inter-comparison
- Develop <u>comprehensive data validation methods</u> that employ ground, aircraft, balloon, and satellite measurements and with models
- Specify a comprehensive, consistent and quality-controlled <u>multi-mission validation database</u> in an accepted format and employing user-friendly tools

Atmospheric Composition Updates

- 1. Tropospheric ozone datasets harmonization and validation
- VC-20-01

2. Aerosol, Cloud & Precipitation Profile Protocol (ACPPV)

CV-22-01

3. GHG and AQ Constellations Cal/Val highlights

CV-20-02/03/04

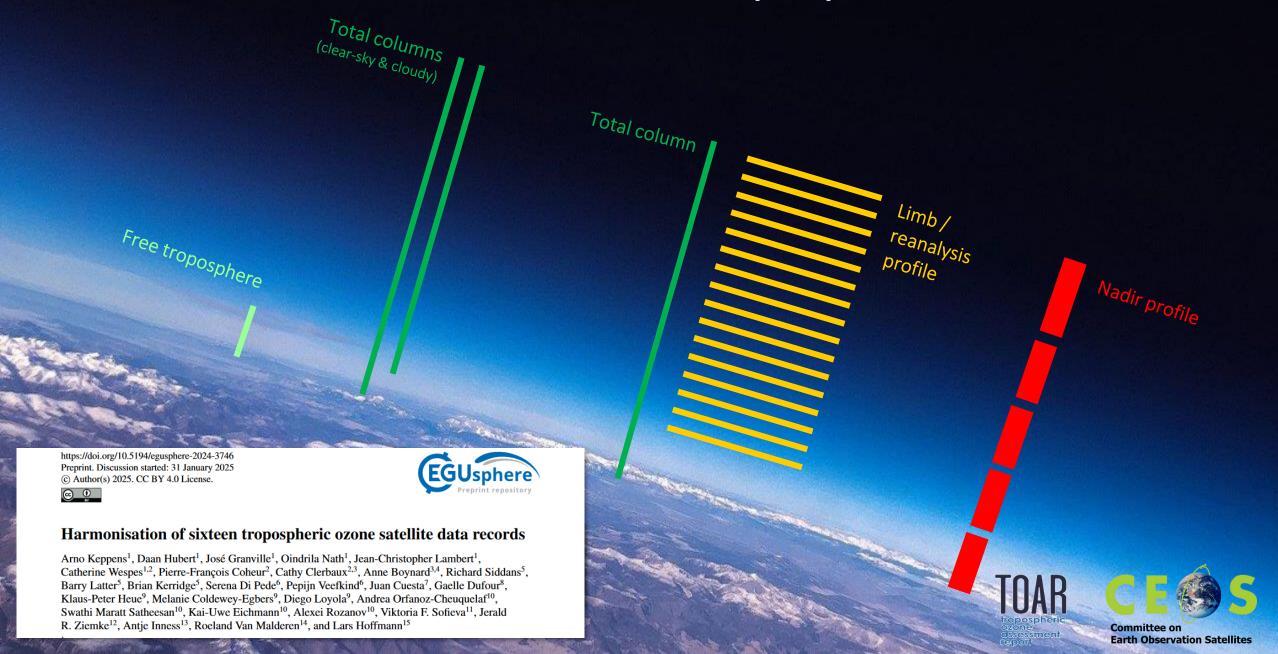
4. CINDI-3 campaign

CV-24-01

5. CEOS-FRM – Atmospheric composition

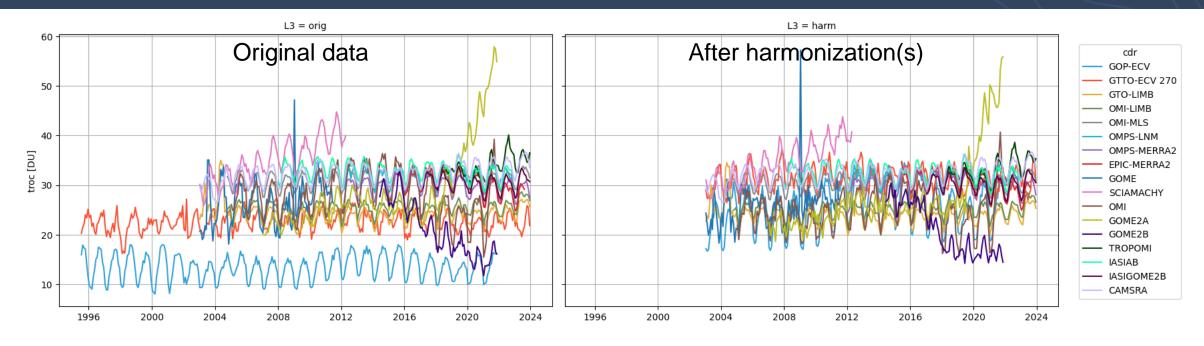
CV-23-01

- 6. Validation networks design and evolution
- 7. AC-VC-21/ ACSG joint meeting 2025



- CEOS activity on Tropospheric ozone (satellite) datasets validation and harmonization (Lead DLR, Co-Leads BIRA-IASB & NASA)
- Direct support to IGAC TOAR-II, responding to needs and questions highlighted by TOAR-I (2014-2019)
- TOAR-II community papers: Copernicus Special Issue closed
- TOAR-II assessment papers: to be published in *Phil. Trans. A*
- Formulating ideas for TOAR-III, e.g.:
 - Impact of wildfires and wildland-urban interface fires to O₃
 - Policy-relevant outcomes, e.g. "what reductions in precursor emissions would achieve a 0.1 K reduction from O₃ radiative forcing?"
 - Geostationary sounders for diurnal observations of ozone
 - Expanded use of AI for predicting surface O₃

Harmonization of TOAR-II satellite tropospheric ozone datasets


Harmonization of satellite tropospheric ozone data

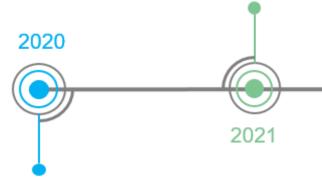
Product	Provider(s)	Coverage	Native sampling resolution	Native top level
ERS2/GOME v3	RAL/ESA	global, 1995/06-2011/06	$320 \times 40 \text{ km}^2$ at $10:30 \text{ LST}$	-
Envisat/SCIAMACHY v3	RAL/ESA	global, 2002/08-2012/04	$240 \times 32 \text{ km}^2$ at 10:00 LST	-
Metop-A/GOME2 v3	RAL/ESA	global, 2007/01-2021/11	$160 \times 160 \text{ km}^2$ at 09:30 LST	-
Metop-B/GOME2 v3	RAL/ESA	global, 2014/06-2021/11	$160 \times 160 \ \mathrm{km^2}$ at 09:30 LST	-
Aura/OMI v2	RAL/ESA	global, 2004/10-2021/10	$52 \times 48 \text{ km}^2 \text{ at } 13:30 \text{ LST}$	-
S5P/TROPOMI v2	KNMI/ESA	global, 2018/05-2023/12	$28 \times 28 \text{ km}^2$ at 13:30 LST	-
Metop-AB/IASI v2015 CDR	ULB/LATMOS/EUMETSAT	global, 2008/01-2022/12	12 km diam. at 09:30 LST	-
Metop-B/IASI+GOME2 v2	LISA/AERIS	global, 2016/08-2023/12	12 km diam. at 09:30 LST	-
GOP-ECV* v3	DLR/RAL/ESA	global, 1995/07-2021/10	$5^{\circ} \times 5^{\circ} \times$ month	-
OMPS-LNM v2.0	IUP-UB	60°S-60°N, 2012/02-2022/12	$5^{\circ} \times 5^{\circ} \times$ month	LRT (ERA5) & PVU= 3.5
OMI-LIMB v1	FMI/DLR/ESA	global, 2004/10-2023/12	$1^{\circ} \times 1^{\circ} \times$ month	LRT (ERA5) & ozonopause
GTO-LIMB v1	FMI/DLR/ESA	global, 2003/01-2023/12	$1^{\circ} \times 1^{\circ} \times$ month	LRT (ERA5) & ozonopause
OMI-MLS	NASA	60°S-60°N, 2004/10-2023/12	$5^{\circ} \times 5^{\circ} \times$ month	LRT (NCEP)
OMPS-MERRA2	NASA	global, 2012/01-2023/12	$1^{\circ} \times 1^{\circ} \times$ month	$\theta = 380$ K & PVU= 2.5
EPIC-MERRA2	NASA	global, 2015/06-2023/08	$1^{\circ} \times 1^{\circ} \times$ month	$\theta = 380$ K & PVU= 2.5
GTTO-ECV v6lc	DLR/BIRA-IASB/ESA	20°S-20°N, 1995/07-2023/12	$1^{\circ} \times 1^{\circ} \times$ month	270 hPa
CAMSRA EAC4	ECMWF	global, 2003/01-2023/12	$0.75^{\circ} \times 0.75^{\circ}$ at 0, 6, 12, 18 UTC	-
Ozonesonde	TOAR-II HEGIFTOM	43 station locations	$1^{\circ} \times 1^{\circ} \times$ month	-

Harmonization of satellite tropospheric ozone data

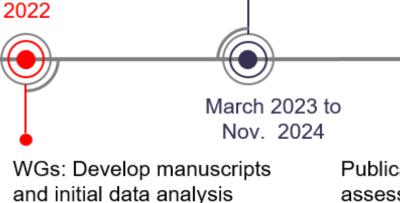
- Harmonization needs addressed: (i) Vertical representation & units, (ii) Tropospheric top levels, (iii) Surface pressure, (iv) Spatial sampling, (v) Temporal sampling, (vi) A-priori information sources, (vii) A-priori information (effective) contributions (vertical smoothing)
- Satellite data harmonization reduces dispersion between datasets by about ~10-40 %.
- Residual discrepancies between harmonized satellite data ⇒ other sources of uncertainty

TOAR-II Status and roadmap

First TOAR-II workshops
Formation of working groups (WGs)
Beginning of new data collection


Finalize database

Complete data analyses


Paper submissions to the

Community Special Issue

Selection of new steering committee
Planning of objectives and roadmap
Development of enhanced data
infrastructure

Develop new ozone metrics and populate database

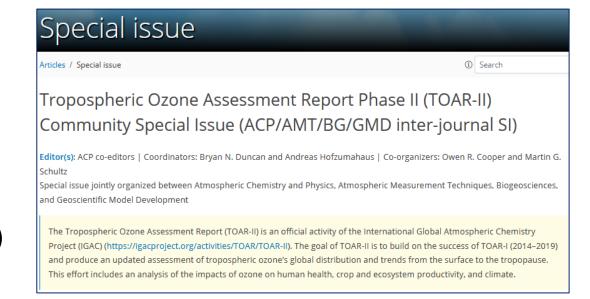
Publication of TOAR-II assessment papers

Dec., 2025

We are here

https://igacproject.org/activities/TOAR/TOAR-II

TOAR-II / Satellites


TOAR-II Community Special Issue in Copernicus journals (closed)

(30 papers published, 27 in review)

Satellite contributions: 21 in total

- Intercomparison & harmonization papers
 (2 published, 3 in review) ⇒ VC-20-01
- Satellite O₃ trend papers (4 published, 4 in review)
- Reanalysis papers (1 published, 2 in review)
- Satellite O₃ precursors trends (1 published)
- Other analyses: CoViD-19 period, O₃ production rates, O₃ Radiative Forcing, model evaluation (3 published, 1 in review)

https://acp.copernicus.org/articles/special_issue1256.html

TOAR-II / Satellites

TOAR-II assessment papers (lead authors)

Overview paper
 Helen Worden and Martin Schultz

Health Gaige Kerr

Vegetation Lisa Emberson

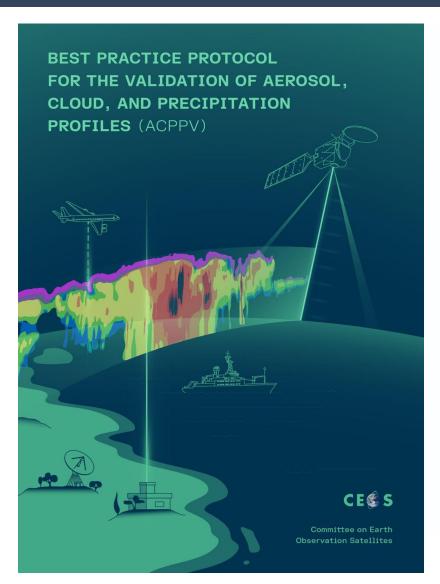
Climate Sophie Szopa

S. America Regional Rodrigo Seguel

Africa Regional Raeesa Moola

STE James Keeble and Paul Griffiths

Satellite Data
 Daan Hubert and Kazuyuki Miyazaki


Oceans+Polar
 Roberto Sommariva

Tropics (TBD)
 Audrey Gaudel and Bastien Sauvage

Submission deadline 31 December 2025

ACPPV: Finalization and Publication

BEST PRACTICE PROTOCOL FOR THE VALIDATION OF AEROSOL, CLOUD, AND PRECIPITATION PROFILES (ACPPV) CONSORTIUM

Published on CEOS portal

https://ceos.org/publications-key-documents/

DOI assignment in Zenodo

https://zenodo.org/records/15025627

97 authors from 58 institutions

Amiridis, Vassilis; Marinou, Eleni; Hostetler, Chris; Koopman, Rob; Cecil, Daniel; Moisseev, Dmitri; Tackett, Jason; Groß, Silke; Baars, Holger; Redemann, Jens; Marenco, Franco; Baldini, Luca; Tanelli, Simone; Fielding, Mark; Janiskova, Marta; Tanaka, Toshiyuki; O'Connor, Ewan; Fjaeraa, Ann Mari; Paschou, Peristera; Voudouri, Kalliopi Artemis; Ferrare, Richard; Burton, Sharon; Schuster, Gregory; Kato, Seiji; Winker, David; Shook, Michael; Bley, Sebastian; Haarig, Moritz; Floutsi, Athena Augusta; Wandinger, Ulla; Trapon, Dimitri; Pfitzenmaier, Lukas; Papagiannopoulos, Nikolaos; Mona, Lucia; Posselt, Derek; Mason, Shannon; Rennie, Michael; Benedetti, Angela; Hogan, Robin; Sogacheva, Larisa; Balis, Dimitris; Michailidis, Konstantinos; van Zadelhoff, Gerd-Jan; Nowottnick, Edward; Yorks, John; Mroz, Kamil; Donovan, David; L'Ecuyer, Tristan; Okamoto, Hajime; Sato, Kaori; Henderson, David; Nishikawa, Tomoaki; Barker, Howard; Cole, Jason; Qu, Zhipeng; Clerbaux, Nicolas; Nakajima, Takashi; Chase, Randy; Wolff, David; Landulfo, Eduardo; Kirstetter, Pierre-Emmanuel; Mather, Jim; Ohigashi, Tadayasu; Ryder, Claire; Tzallas, Vasileios; Tsikoudi, Ioanna; Tsekeri, Alexandra; Tsichla, Maria; Koutsoupi, Iliana; Kubota, Takuji; Siomos, Nikolaos; Takahashi, Nobuhiro; Horie, Hiroaki; Suzuki, Kentaroh; Mace, Jay; McLean, William; Borderies, Maria; Mangla, Rohit; Escribano, Jerónimo; Moradi, Isaac; Zhang, Jianglong; Juli, Rubin; Ikuta, Yasutaka; Marbach, Thierry; Bojkov, Bojan; Accadia, Christophe; Fougnie, Bertrand; Spezzi, Loredana; Bozzo, Alessio; Chimot, Julien; Jafariserajehlou, Soheila; Flament, Thomas; Mattioli, Vinia; Strandgren, Johan; Barlakas, Vasileios; Kollias, Pavlos.

ACPPV: Conclusion and Outlook

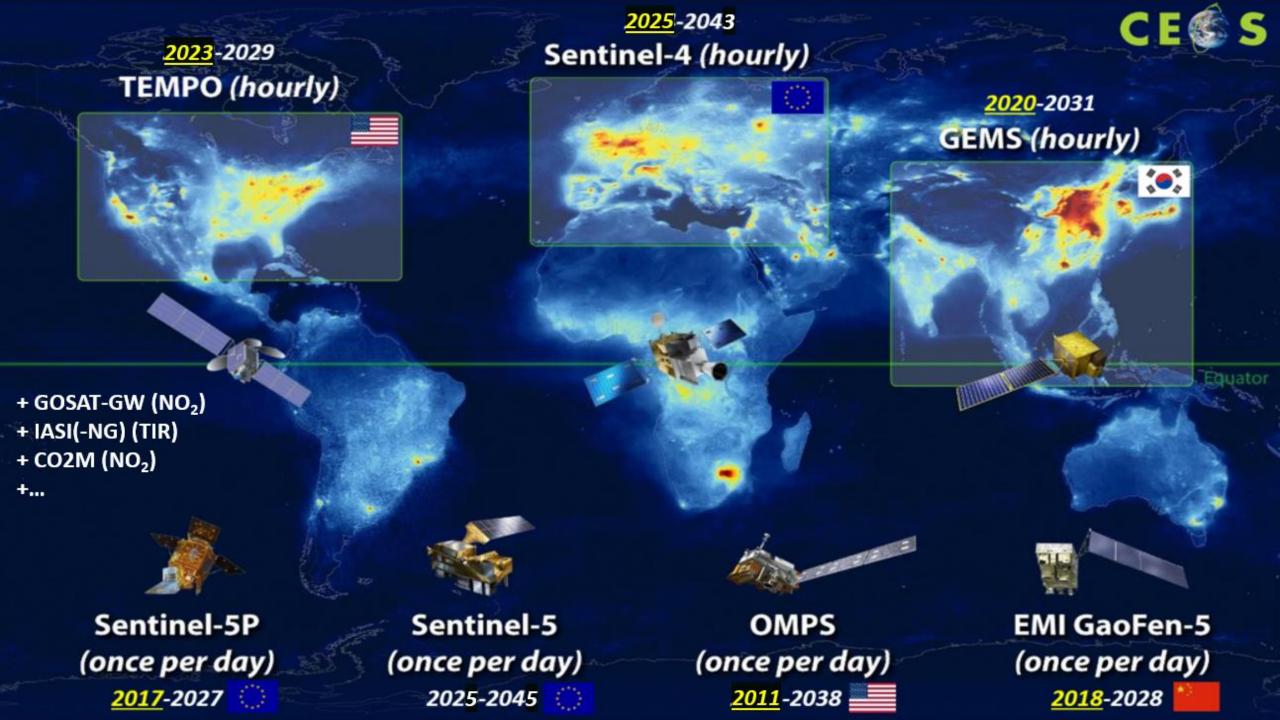
Reported by Robert Koopman (ESA) at AC-VC-21 / ACSG 2025 (Takamatsu, June 2025) Look at CEOS.org/meetings/AC-VC-21 for details

CONCLUSION

- Comprehensive study on best practice for space profiler validation
 - Large community working together
 - Gaps identified and recommendations made
- New tools provided
- Some knowledge/measurement gaps already identified and filled

OUTLOOK

- Keep large community working together
- Continue to develop best practices
- Continue to identify and fill knowledge/measurement gaps
- Continue to improve tools


VC-20-01

GHG Constellation Cal/Val Highlights

- Details: see Thursday report 3.12 on GHG Cal/Val and Networks
- L1 calibration
 - RRV Intercalibration campaigns
 - VICAL GHG Cal/Val website
 - Match-up database for SWIR and TIR sounders
- ❖ L2 GHG networks
 - Several actions in progress, e.g., FTIRs and Pandora's deployment in India
 - Joint NDACC-IRWG/TCCON/COCCON meeting 2025 in Nainital, June 16-20
 - EUMETSAT study/service for CO2M product validation methods, reference data provision and processing, incl. TCCON, COCCON and NDACC
 - EUMETSAT project for Pandora NIR development
- Facility scale emissions/fluxes validation guidelines

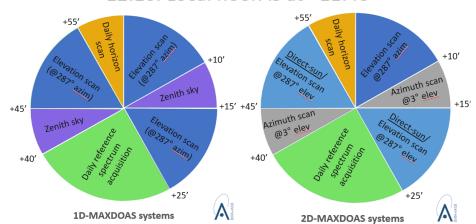
Air Quality Constellation Validation

Cal/Val coordination, plans and joint activities

VC-20-02/02/03

- ❖ GEMS AO, TEMPO MVP, ESA/EUMETSAT joint AO for S-4/-5
- L2 algorithm testing and intercomparisons (S-4 L2 prototype testing on GEMS etc.)
- International collaboration on FRMs and other validation data: collaborative airborne campaigns, Pandora network expansion, CINDI-3 MAX-DOAS campaign with participation of other networks
- International collaboration on validation
 - Sentinel-5P MPC operational validation service (2017-2027)
 - ESA PEGASOS validation service for GEMS and TEMPO (2025-2026)
 - U. Yonsei Geo-Ring validation and research for GEMS and TEMPO (2025-2028)
 - Joint meetings/conversations of GEMS, TEMPO and Sentinel-5P validation teams

The Third Cabauw INtercomparison of DOAS-like Instruments (CINDI-3)


Semi-blind intercalibration and intercomparison campaign with external referee

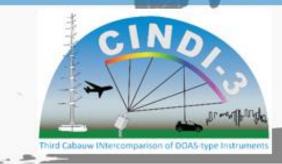
- to intercalibrate instruments and assess mutual consistency of measurements
- to get NDACC and ACTRIS-CREGARS certification for new instruments
- to assess and improve FRM maturity for validation of CEOS Air Quality and Ozone satellite constellations

Data product	Fitting range
NO ₂ (VIS range)	425 – 490 nm
NO ₂ (alternative VIS range)	411 – 445 nm
NO ₂ (UV range)	338 – 370 nm
O ₄ (VIS range)	425 – 490 nm
O ₄ (UV range)	338 – 370 nm
НСНО	324.5 – 359 nm
HONO	335 – 373 nm
СНОСНО	436 – 468 nm
O ₃ (Chappuis bands)	450 – 540 nm
O ₃ (Huggins bands)	320 – 340 nm

Observation protocol

Every day between 11:10:00 and 12:10. Local noon is at ~11:40

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment


Bureau of Meteorology

CINDI-3: ~30 research institutes, companies and international organisations

Cabauw, The Netherlands

UV-Vis intercalibration campaign organized as part of NDACC and ACTRIS CREGARS topical center, with additional ESA support.

Overview

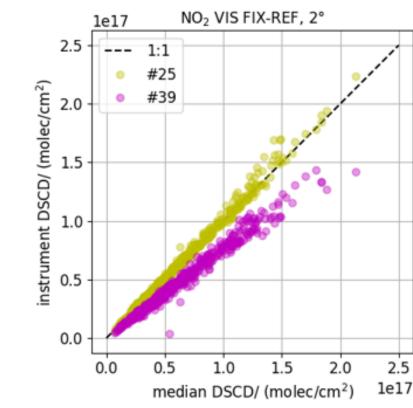
- 35+ UV-VIS MAX-DOAS instruments intercompared, from 16 countries
- 60+ instruments deployed
- 100+ participants
- FRM4DOAS central processing applied to 50% of participating instruments
- Airborne deployment for NO₂ mapping and profiling
- Data analysis in progress

CINDI-3 in-field calibration (LuftBlick & NASA)

Goal

For each instrument, to measure:

- Gain and S/N ratio
- Detector linearity
- PRNU (Pixel Response Non-Uniformity)
- Effective exposure time
- Stray light


#	Institute	Instrument PI	Instrument type
34	KNMI	Ankie Piters	Pandora-1S
35	LBLICK	Alexander Cede	Pandora-1S
36	LBLICK	Alexander Cede	Pandora-1S

Semi-blind intercomparison of slant columns

#	Institute	Instrument PI	Instrument type	10
01	UOM	Rob Ryan	Airyx SkySpec-1D	
02	ABOM	Rob Ryan	Airyx SkySpec-1D	
03	KNMI	Ankie Piters	Airyx SkySpec-1D	
06	UOT	Ramina Alwarda	Airyx SkySpec-1D	
07	SUWON	Hyeong-Ahn Kwon	Airyx SkySpec-1D	j
14	LMU	Mark Wenig	Airyx SkySpec-1D	(
21	BIRA	Alexis Merlaud	Airyx SkySpec-2D	١
24	ISAC	Elisa Castelli	Airyx SkySpec-2D	
28	IUPH	Udo Frieß	Airyx SkySpec-2D	
32	AIRYX	Johannes Lampel	Airyx SkySpec-2D	
33	RAL	Ka Lok Chan	Airyx SkySpec-2D	
39	USTC	Cheng Liu	Airyx SkySpec-2D	

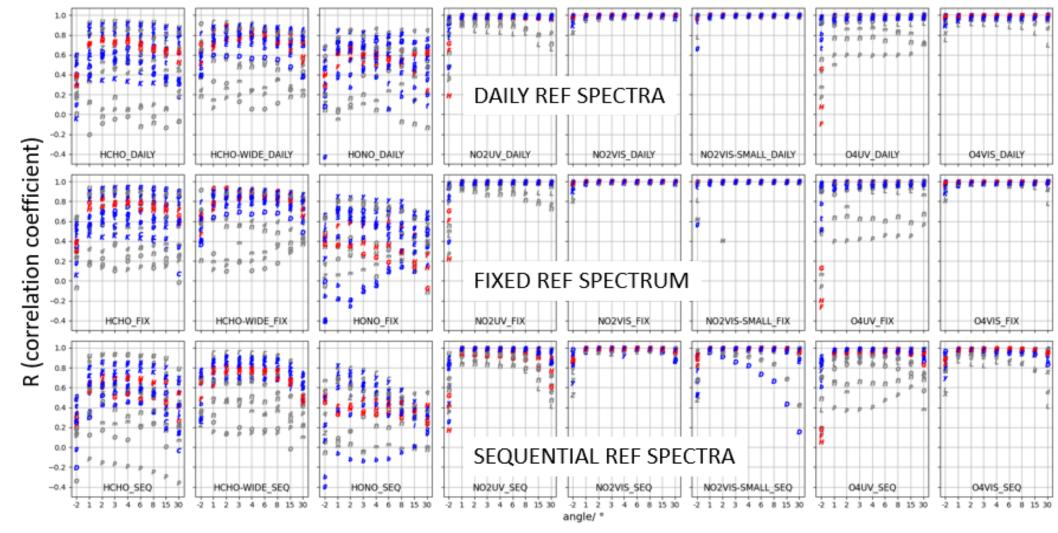
18 da	ys (J	lune 2	2 -> 19
-------	-------	--------	---------

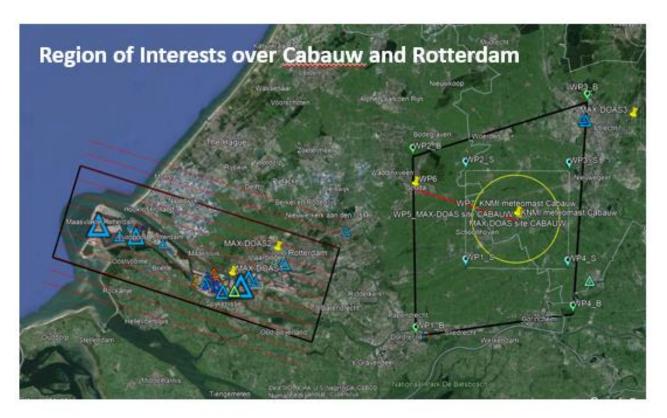
- 8 data products
- 3 reference spectra types
- 9 elevation angles

#	Institute	Instrument PI	Instrument type
04	KNMI	Ankie Piters	Mini-DOAS Hoffmann
05	MPIC	Thomas Wagner	Tube-DOAS
08	LATMOS	Andrea Pazmino	SAOZ
09	LATMOS	Andrea Pazmino	Mini-SAOZ #1
10	LATMOS	Andrea Pazmino	Mini-SAOZ #2
11	EVORA	Daniele Bortoli	SPATRAM-1
15	AIOFM	Ang Li	2D-MAXDOAS
16	AIOFM	Pinhua Xie	2D-MAXDOAS
17	AIOFM	Yuhan Luo	2D-MAXDOAS
18	AUTH	Dimitris Karagkiozidis	PHAETHON
19	AUTH	Dimitris Karagkiozidis	DELTA
20	BIRA	Alexis Merlaud	2D-MAXDOAS
25	IUPB	Kai Krause	2D-MAXDOAS
27	IUPB	Kai Krause	IMPACT
29	IUPH	Udo Frieß	PMAX-DOAS
30	INTA	Monica Navarro	RASAS-III
40	PKNU-NIER	G. Park/ H. Hong	AQ-Profiler

2.5

Overview of regression results



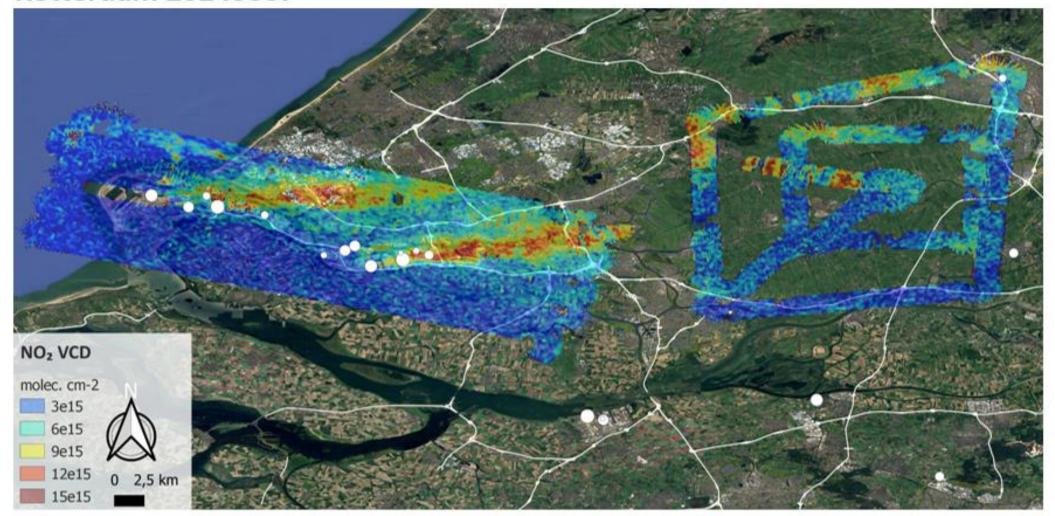


Airborne NO₂ mapping and profiling

- 10 flights performed (4 over Rotterdam, 6 Antwerp)
- NO₂ mapping over predefined ROIs for S5p validation
- Spirals for vertical distribution profiling using in-situ sensors

SWING (NO₂ mapping)

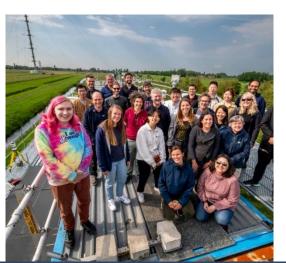
ICAD (NO₂)



POM (O₃)

Preliminary results: SWING+ NO₂ VCD maps

Rotterdam 20240607



CINDI-3 – Summary

- ❖ 32 UV-Vis DOAS instruments were intercompared in Cabauw during one month in May-June 2024
- ❖ Preliminary evaluations show good agreement for NO₂ and O₄ measurements, more challenging for other gases
- In-depth analysis of data in progress in several task groups
- CINDI-3 workshop hosted by Kirchhoff-Institute for Physics (KIP), Heidelberg, 17-19 March 2025
 - Hybrid, ~100 participants (50 in person)
 - 25 talks covering all data and aspects of the campaign
 - Extensive discussions of results in 4 sessions
 - Visit of new Airyx facility in Heidelberg

CINDI-3 — Outlook

- Publication plan: AMT/ACP Special Issue
- CEOS-FRM maturity level (for Sentinel-4/-5 and CO2M classes)
 - Initial CEOS-FRM maturity assessment of FRM4DOAS data published by Van Roozendael et al. in Remote Sens. 2024, https://doi.org/10.3390/rs16234523
 - Post-campaign improvement of MAX-DOAS measurements + update to version 2 of CEOS-FRM guidelines
 - Updated CEOS-FRM maturity assessment anticipated
- ❖ Next meeting: DOAS Workshop, Thessaloniki, 9-11 July 2025

CEOS-FRM Maturity Assessment Framework v1

https://calvalportal.ceos.org/web/guest/frms-assessment-framework

CEOS-FRM Maturity Assessment Framework

remote sensing Open Access Communication

selected)

Fiducial Reference Measurements (FRMs): What Are They?

by Philippe Goryl 1,* ✓, Nigel Fox 2 ✓, Craig Donlon 3 ✓ and Paolo Castracane 4 ✓

Self-assessment					Independent assessor
Nature of FRM	FRM Instrumentation	Operations/ sampling	Data	Metrology	Verification
Descriptor	Instrument Documentation	Automation level	Data completeness	Uncertainty Characterisation	Guidelines adherence
Location/ availability of FRM	Evidence of traceable calibration	Measurand sampling	Availability and Usability	Traceability Documentation	Utilisation/Feedback
Range of sensors	Maintenance plan	ATBDs on processing/software	Data Format	Comparison/calibration of FRM	Metrology verification
Complementary observations	Operator expertise	Guidelines on transformation to satellite Pixel	Ancillary Data	Adequacy for intended class of sensors	Independent <u>Verificaton</u>
FRM CLASSIFICATION					ABCD (to be

Self-assessment pilots

Self-assessments published in Remote Sensing Special Issue

version 1 (2023)

CEOS-FRM Maturity Assessment Framework v1

FRM4DOAS and FRM4GHG CEOS-FRM v1 self-assessments published

Article

Fiducial Reference Measurements for Air Quality Monitoring Using Ground-Based MAX-DOAS Instruments (FRM4DOAS)

Michel Van Roozendael ^{1,*}, Francois Hendrick ¹, Martina M. Friedrich ¹, Caroline Fayt ¹, Alkis Bais ², Steffen Beirle ³, Tim Bösch ⁴, Monica Navarro Comas ⁵, Udo Friess ⁶, Dimitris Karagkiozidis ², Karin Kreher ⁷, Alexis Merlaud ¹, Gaia Pinardi ¹, Ankie Piters ⁸, Cristina Prados-Roman ⁵, Olga Puentedura ⁵, Lucas Reischmann ³, Andreas Richter ⁴, Jan-Lukas Tirpitz ^{6,†}, Thomas Wagner ³, Margarita Yela ⁵ and Steffen Ziegler ³

Remote Sens. 2024, 16(23), 4523; https://doi.org/10.3390/rs16234523

Article

Fiducial Reference Measurement for Greenhouse Gases (FRM4GHG)

Mahesh Kumar Sha ^{1,*} ⁰, Martine De Mazière ¹ ⁰, Justus Notholt ², Thomas Blumenstock ³, Pieter Bogaert ¹, Pepijn Cardoen ¹, Huilin Chen ⁴, Filip Desmet ¹, Omaira García ⁵ ⁰, David W. T. Griffith ⁶, Frank Hase ³, Pauli Heikkinen ⁷, Benedikt Herkommer ³, Christian Hermans ¹, Nicholas Jones ⁶, Rigel Kivi ⁷ ⁰, Nicolas Kumps ¹, Bavo Langerock ¹, Neil A. Macleod ⁸, Jamal Makkor ², Winfried Markert ², Christof Petri ², Qiansi Tu ^{3,9}, Corinne Vigouroux ¹, Damien Weidmann ⁸ ⁰ and Minqiang Zhou ^{1,10} ⁰

Remote Sens. 2024, 16(18), 3525; https://doi.org/10.3390/rs16183525

Special Issue

Copernicus Sentinels Missions Calibration, Validation, FRM and Innovation Approaches in Satellite-Data Quality Assessment

Article

Fiducial Reference Measurements for Greenhouse Gases (FRM4GHG): Validation of Satellite (Sentinel-5 Precursor, OCO-2, and GOSAT) Missions Using the COllaborative Carbon Column Observing Network (COCCON)

Mahesh Kumar Sha ^{1,*} ⁰, Saswati Das ² ⁰, Matthias M. Frey ^{3,4} ⁰, Darko Dubravica ⁴, Carlos Alberti ⁴, Bianca C. Baier ⁵ ⁰, Dimitrios Balis ⁶ ⁰, Alejandro Bezanilla ⁷ ⁰, Thomas Blumenstock ⁴, Hartmut Boesch ⁸, Zhaonan Cai ⁹, Jia Chen ¹⁰ ⁰, Alexandru Dandocsi ¹¹ ⁰, Martine De Mazière ¹⁰, Stefani Foka ¹², Omaira García ¹³ ⁰, Lawson David Gillespie ^{14,15} ⁰, Konstantin Gribanov ¹⁶, Jochen Gross ⁴ ⁰, Michel Grutter ⁷ ⁰, Philip Handley ^{5,17} ⁰, Frank Hase ⁴, Pauli Heikkinen ¹⁸, Neil Humpage ^{19,20}, Nicole Jacobs ¹⁴, Sujong Jeong ²¹, Tomi Karppinen ¹⁸ ⁰, Matthäus Kiel ², Rigel Kivi ¹⁸ ⁰, Bavo Langerock ¹, Joshua Laughner ² ⁰, Morgan Lopez ²² ⁰, Maria Makarova ¹² ⁰, Marios Mermigkas ⁶ ⁰, Isamu Morino ³ ⁰, Nasrin Mostafavipak ^{14,23}, Anca Nemuc ¹¹ ⁰, Timothy Newberger ^{5,17}, Hirofumi Ohyama ³ ⁰, William Okello ²⁴ ⁰, Gregory Osterman ², Hayoung Park ²¹ ⁰, Razvan Pirloaga ^{11,25} ⁰, David F. Pollard ²⁶ ⁰, Uwe Raffalski ²⁷ ⁰, Michel Ramonet ²² ⁰, Eliezer Sepúlveda ^{13,28}, William R. Simpson ²⁹ ⁰, Wolfgang Stremme ⁷ ⁰, Colm Sweeney ⁵, Noemie Taquet ^{7,28}, Chrysanthi Topaloglou ⁶, Qiansi Tu ^{4,30} ⁰, Thorsten Warneke ⁸, Debra Wunch ¹⁴ ⁰, Vyacheslav Zakharov ¹⁶ ⁰ and Minqiang Zhou ⁹

Remote Sens. 2025, 17(5), 734; https://doi.org/10.3390/rs17050734

CEOS-FRM Maturity Assessment Framework v2

CEOS-FRM Maturity Assessment Framework version 2 (2025)

- V1 applicable to <u>a measurement</u> ⇒ classification
- V2: additional column characterizing 'completeness of validation capacity' achieved e.g. by network deployment of the same instrumentation, centralized processing, and timeliness; not classification criteria
- Applicable to a network deployment of similar instruments measuring the same measurand, not meant for multiconstituents/multi-instruments/GHG-AQ-synergy "supersites"
- Test cases for v2: FRM4DOAS, PGN, NDACC, ACTRIS-CREGARS (Centre for Reactive Trace Gases Remote Sensing)

Completeness, coverage and distribution Validation capacity

validation capacity

Geographical coverage

Temporal sampling

Centralized data, processing, quality assessment and adherence to community standards

Timeliness

CEOS-FRM – Validation Capacity

Capacity of assessing the properties of the measuring system in terms of completeness and capability to properly get characteristics of the

- measurand over full range of possible values
- appropriate sampling of its variations (e.g.: diurnal cycle to long-term trends, oscillations, Brewer-Dobson Circulation, polar vortex, emissions...)
- most relevant atmospheric states (urban/rural/facility, meridian, land/ocean...)

but also capability to get range and sampling of the

- most influencing quantities (e.g., constituent profile shape, surface albedo, cloud properties, temperature contrast, aerosol load, etc.),
- most influencing <u>measurement parameters</u> (e.g.: Solar Zenith Angle, View Zenith Angle, South Atlantic Anomaly etc.)

Staggered approach to satellite validation

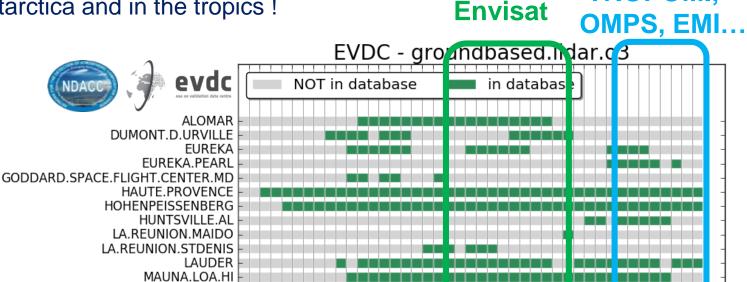
- 1. 'Traceability validation': end-to-end validation of L1b-to-L2 retrieval diagram elements and associated uncertainties
- 2. L2 product validation: global, long-term production of L2 quality indicators
- 3. 'Product-to-service validation' connecting space, surface, modelling and applications; multi-constituent/multi-theme; may have operational needs

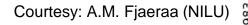
Tiered approach to Cal/Val sites and measurements

- **Tier 1:** High CEOS-FRM classes; end-to-end, full suite of retrieval & influencing quantities; may include L1b related data and user-oriented data
- Tier 2: High-to-mid CEOS-FRM classes; classical L2 product validation, CDRs
- Tier 3: Low CEOS-FRM classes; global, specific, first-order quality assessment

Needs, status and issues regarding FRM networks discussed at

- ESA/Copernicus Atmospheric Missions Performance Cluster (Service Reviews)
- EUMETSAT CO2M Cal/Val Support Study for GHG and NO₂
- Quadrennial Ozone Symposium (Boulder, CO, 2024/07) for O₃
- NDACC Steering Committee annual meeting (Santiago, Chile, 2024/11)
- AGU Fall Meeting 2024 (Washington DC, 2024/12) for <u>Air Quality Constellation</u>
- AC-VC-21 / ACSG joint meeting 2025 (Takamatsu, Japan) for AQ, GHG & O₃
- NDACC-IRWG / TCCON / COCCON joint meeting 2025 (Nainital, India, 2025/06)
- WMO GAW Global O₃ and ODS Monitoring Strategy Meeting (WMO, 2025/07)




TROPOMI,

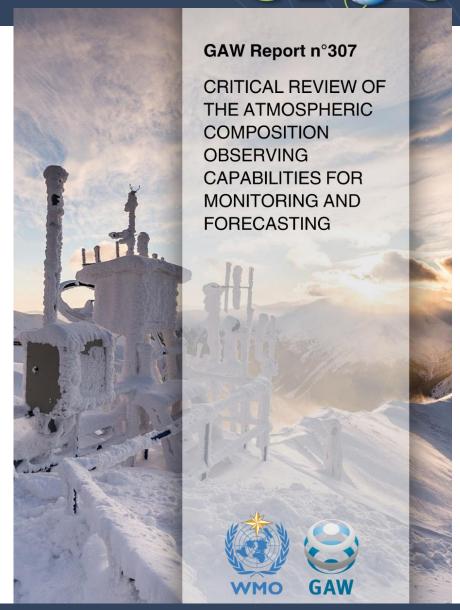
Time dependent operation of ozone lidars and ozonesondes (funding, staff, supplies, station access...)

⇒ Incomplete ozone validation coverage!

E.g., no recent lidar measurements in Arctic/Antarctica and in the tropics!

NY.ALESUND RIO.GALLEGOS SODANKYLA

> TATENO TORONTO TSUKUBA


TABLE.MOUNTAIN.CA

O₃ Lidar (DIAL)

- WMO GAW Expert Team on Network Design and Evolution (ET-ACNDE)
- Chairs R. Eckman, H. Tanimoto and S. Moreno
- GAW Report No 307 just published

2. API	PLICATION AREAS
2.1	Key variables and their prioritization
2.2	Spatial and Temporal variability of variables and identified key gaps
3. RE	COMMENDATIONS ON HOW TO ADDRESS THE GAPS
3.1	Aerosols
3.2	Long-lived greenhouse gases
3.3	Stratospheric ozone and vertical ozone profiles
3.4	Reactive gases
3.5	Total atmospheric deposition
3.6	UV radiation

- WMO GAW Global Ozone Monitoring Strategy
 - Dedicated GAW report in preparation, to be published before the next GAW Symposium (April 2026)
 - Will include a Satellite Validation Needs section with ACSG contributions
- NDACC network strategy
 - Peer-reviewed Strategy paper in finalization, including satellite validation strategies and viewpoint of stakeholders (incl. ACSG and space agencies)
 - Satellite session at "NDACC Symposium 2025 Celebrating 35th Anniversary of the Network", Virginia Beach, VA, USA (2025/10)
- ❖ GHG Roadmap v2 Annex C Tracking needs, gaps and issues (agenda item 3.12 on Thursday)

AC-VC-21 / ACSG Joint Meeting 2025

AC-VC-21 / ACSG Joint Meeting 2025 hosted by NIES in Takamatsu, June 9-13

Co-hosted with IWGGMS-21

AC-VC-21 / ACSG Joint Meeting 2025

- Coordinated agenda with interleaved parts
- WGCV-ACSG session with general Cal/Val relevant to the constellations
- WGCV-ACSG session on operational validation capacity
- ❖ AC-VC-21/GHG agenda coordinated with IWGGMS-21

Date	Room	IWGGMS	AC-VC	WGCV-ACSG
Mon 09 June	Kagawa	1 GHG Missions Overview		
	International			
	Conference Hall			
Tue 10 June	Small Hall 1/		2 Tropospheric Oz	one
	Sunport Hall			2 General Cal/Val
	Takamatsu		2 Limb and GEO O	zone
Wed 11 June	Small Hall 1/		3 AQ Trace Gases	
	Sunport Hall			
	Takamatsu			
Thu 12 June	Small Hall 1/		4 AQ aerosol	
	Sunport Hall			
	Takamatsu			
Thu 12 June	Small Hall 1/		5 General Discussion	
	Sunport Hall			
	Takamatsu			
Fri 13 June	Shoko-Shorei-		6 GHG	
	Kan Hall,			
	Ritsurin Garden			
Fri 13 June	Shoko-Shorei-		7 AC-VC Wrap Up	
	Kan Hall,			
	Ritsurin Garden			

AC-VC-21 / ACSG Joint Meeting 2025

Discussion topics

- WGCV-ACSG and AC-VC collaboration
- CEOS-FRM V2, Cal/Val Portal updates, Cal/Val Resources document
- Tracking gaps and issues for validation systems and networks, incl. completeness of validation and operational validation capacity
- New research and applications, connecting validation, research and users/services
 - Develop <u>multi-constituents/multi-domains</u> Cal/Val sites integrating satellitederived L1B and L2(+) column validation with AQ/GHG/O₃ synergies, nearsurface concentration measurements, emissions/fluxes
 - Co-located MAX-DOAS/Pandora/FTIR, sondes... + (national) in-situ data + flux towers (e.g., ICOS)...

Thank you for your attention!