A Systematic Approach to CDR Inventory Assessment Working Group on Climate May 26, 2011

Brian Killough and Shelley Stover CEOS Systems Engineering Office (SEO)

What is the CEOS SEO?

- The CEOS Systems Engineering Office (SEO) was established in April 2007 (sponsored by NASA) to facilitate the development of CEOS global space plans.
- The SEO <u>technical functions</u> include: requirements definition, gap assessments, systems databases and tools, special projects, and system architecture development.
- The SEO <u>management functions</u> include: improving communications through web-based management tools (website, mailing lists, action tracking), and developing written and media products for CEOS education and outreach.

SEO Support to the WGClimate

SEO is supporting the WGClimate actions outlined by the CEOS Chair to GCOS and the WCRP as follows:

- 1.) Undertake a review of the generation of FCDRs and derived ECV satellite products by Member Space Agencies
 - Collected FCDR data from NASA, ESA, and SCOPE-CM and populated an online "inventory" database
 - Next, plan to include NOAA data
- 2.) Identify multi-agency implementation teams for each product and review their actions
 - Each CDR entry in the database provides a Principle Investigator and the lead Agency to help in the identification of suitable teams

SEO Support to the WGClimate, cont'd

- 3.) Ensure the coordination of climate product generation with other relevant international initiatives
 - Database will provide timelines for each ECV based measurement that give the CDR and the timeframe
 - These timelines provide a quick assessment for potential international collaboration

Database Concept for CDR Inventory

Preliminary ECV Inventory Data

- CDR Project Names and Descriptions
- CDR Start and End Dates
- CDR Principle Investigator
- Limited to NASA Measures program, ESA CCI, and SCOPE-CM

Future ECV Inventory Data

- Add other agency CDR project preliminary data
- Add additional information as WGClimate deems necessary
- CDR Maturity Index Factors, including information related to sensor use, algorithm stability, metadata and QA, documentation, validation, and public release

Systems Database Foundation

CDR Projects linked to an Agencies, ECVs, and MIM Instruments and Measurements

Current Limitations

Instrument-measurement errors in the underlying MIM database prevent some linkages

Current Limited Query Ability Needs to Expand

- ECV Timeline showing CDR projects and various gaps
- CDR Inventory page with project descriptions

Screenshots of CDR Database

- Climate Tab currently limited to showing all the CDR projects
- Could add queries by ECV, agency, instrument, measurement product, and mission

Primary Investigator	Agency	Project	Description	ECV	Start	Stop	Missions	Instruments
Atlas, Robert	NASA	A Cross-Calibrated Multi-Platform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications	High resolution (25km, every 6-hours) global ocean surface winds from 1987 through 2012.	Surface Wind Speed and Direction	1987	2012	ADEOS-II Aqua DMSP F-10 DMSP F-11 DMSP F-12 DMSP F-13 DMSP F-14 DMSP F-15 DMSP F-8 QuikSCAT TRMM	SeaWinds AMSR-E SSM/I TMI
Chen, Gao	NASA	Creating a Unified Airborne Database for Assessment and Validation of Global Models of Atmospheric Compositions	Aircraft observations of trace gases and aerosol properties.	N/A	1985	2011	"N/A"	"N/A"
Chin, T. Mike	NASA	Multi-sensor Ultra-high Resolution Sea Surface Temperature	Daily Sea Surface Temperature at 1-km horizontal resolution	Sea Surface Temperature	1981	2011	Aqua Metop-A Metop-B Metop-C NOAA-15 NOAA-16 NOAA-17 NOAA-18 NOAA-19 Terra	AMSR-E AVHRR/3 MODIS
Didan, Kamel	NASA	VIP: Vegetation Phenology and	Global 5,600-m EVI2 and	Biomass	1981	2011	Aqua	AVHRR/3

Screenshots of CDR Database

- CDR Project Queries are currently limited to timelines by ECV
- Could add timelines by measurement products, instruments, and missions

ECV: Aerosol Properties - 5 Records Located

Gold-colored squares indicate CDR project covereage.

Project /	Agency	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Twice Daily Fields	NOAA																				
Global Aerosol Optical Thickness	NASA																				
Global Aerosol Size	NASA																				
Aerosol Absorption	NASA																				
CCI Aerosols	ESA																				

Screenshots of CDR Database

www.ceos.org

Home Missions Instruments Measurements Requirements Mission Timelines Statistics Imate Climate Gp Analysis

Systems Database Description

The Committee on Earth Observation Satellties (CEOS) Systems Engineering Office (SEO) Systems Database is designed to support CFOS strategic planning and gap assessments. The content includes current and planned space-based CEOS missions from ESA's CEOS Database of Missions, Instruments and Measurements (MIM) along with additional links to CEOS Constellations, GEO Societal Benefit Areas (SBA) and GEOS Essential Climate Variables (ECV). In order to adequately support gap assessments, the database also contains measurement requirements from a variety of sources. Resulting measurement and data continuity gaps will help identify potential collaborative opportunities for CEOS long-term strategic planning. The SEO envisions this tool will support the GEO Communities of Practice, CEOS Constellations, CEOS SIT leadership, and CEOS agenties.

CDR Inventory Data

- PI, Agency, Project, Description, ECV, Start, Stop
- Mission and Instrument inputs

ECV Measurement Timelines

- Measurement
- Years
- Links to Missions and Instruments

CDR Database Built on a MIM Foundation: The CEOS Databases

www.ceos.org

Systems Database

www.ceos-sysdb.org

Welcome to the CEOS Missions, instruments and Measurements database online.

This database is updated annually based on a survey of CEOS member space agencies and has a number of applications.

- Information sharing in support of the coordination of future Earth observation mission, instrument and measurements plans.
- Earth observation measurement gap analysis including that performed by the CEOS Systems Engineering Office (SEO)
 A connection between the Earth observation user community and
- satellite-operating agencies of CEOS.

 Generation of content for the print edition of The Earth Observation
- Generation of content for the print edition of The Earth Observation
 Handbook.

The most recent update of the database was completed in October 2010.

Agencies Agency table with links to agency summary pages.

Missions Table Searchable mission table with links to mission and instrument summary pages. Index An alphabetical list with links to mission summary pages.

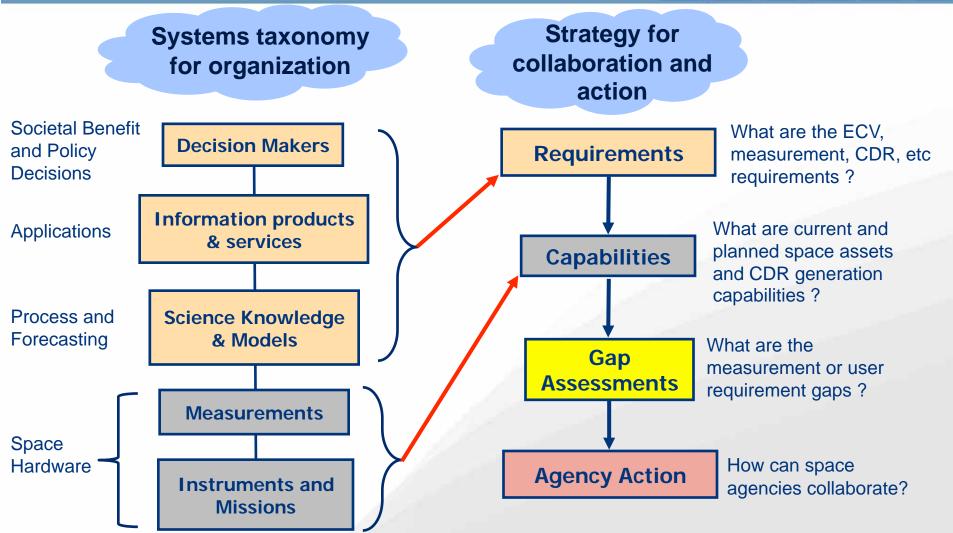
Instruments Table Searchable instrument table with links to instrument and mission summary pages.

Index An alphebetical list with links to instrument summary

Measurements

Overview An overview of the measurement categories and detailed measurements indexed in the database.

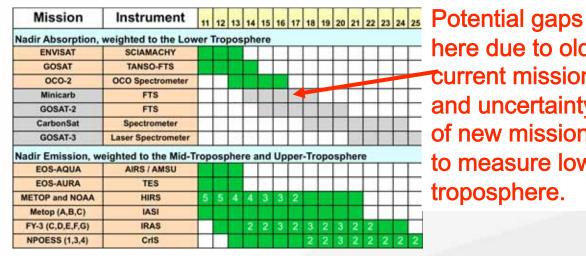
Timelines Customizable measurement timelines with links to


mission summary pages.

Researched and written by Synthesia

1	Measurement	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	202
Cloud bas	e height	8	8	8	8	E	<u>11</u>	25	11	12	2	12	12	20	12	12	<u>110</u>	6	4	2	2
Cloud cov	er	22	22	22	24	200		20	25	21	27	28	ZZ .	28	2	11	98	92	90	Z	8
Cloud ice	(column/profile)	2	2	2	2	1	2	2	2	2	1	2	2	2	2	2	2	1	0	0	0
Cloud ice	content (at cloud top)	4	4	á	4	0	0	0	1	1	2	2	2	3	2	3	2	Z	2	1	1
Cloud liqu	id water (column/profile)	2.5	24	24	20	28	23	20	20	22	18	18	16	110	<u>11</u>	I	8	4	2	1	1
asureme	id water (column/profile) ent: Cloud optical dep ence: 016	=	24	24	20				20			10			11	2	0	4	2	1	1
asureme OS Refere	ent: Cloud optical dep	oth	**		urce-	Accu	racy (RMS)		Δx ((km)		Δε	(km)		<u>2</u>	_	4	Z	3 (h)	
asureme OS Refere	ent: Cloud optical dep ence: 016 Application	oth	20	Soc	urce	Accur	racy (RMS) oreak	thre	Δx ((km)	ak	Δz	(km)	k th	resh	bre	_	thres	h	break
asureme OS Refere	ent: Cloud optical dep ence: 016	oth n	34	Soil Et	urce -	Accur thresi	racy (RMS)	thre 50.00	Δx (esh	(km)	aak 0000	Δε	(km)	k th		_	000	thres 6.000 0.500	m 2	break
asureme OS Refere	ent: Cloud optical depence: 016 Application NWP Globa	oth n	24	Soil Et	urce - UM 5	Accus thresi 50.000	racy (h t	RMS) oreak	thre 50.00	Δx ((km) bre 15.00	ak 0000	Δz thresh	(km) brea N/A	k th	resh 00000	3.000	000	6.000 0.500	ah 00 2	1 2.0000 3.500 2.0000

Systems Approach


General Mission Timeline Results – CO₂ Example

MIM CO₂ Measurement Timeline

SEO Detailed Gap Analysis for CO₂

here due to older current missions and uncertainty of new missions to measure lower troposphere.

- Timelines from the MIM database (LEFT) do not capture all missions producing valid CO₂ measurements and do not accurately reflect gaps.
- SEO gap assessment (TOP) considered instrument types (measurement approach), atmospheric layers, and detailed requirements (accuracy, spatial resolution, temporal resolution).

Database Limitations: Detailed Mission Capabilities

Detailed information is not currently available in the MIM or Systems Databases so this step requires extensive web searches. Hopefully, in the future this level of detail will exist in the databases so this process can be automated.

			Accuracy		
Mission	Instrument	Spatial Sample ∆x (km)	Spatial Swath (km)	Temporal Repeat Cycle Δt (hrs/days)	Total Troposphere Column
			S 200		
Nadir Absorption, Tot	al Troposphere Columns	weighted to t	he Lower 1	roposphere	
ENVISAT	SCIAMACHY	30 x 60	960	72 (3 days)	2% (8 ppm)
GOSAT	TANSO-FTS	10.5	790*	72 (3 days)	1% (4 ppm)
OCO-2	OCO Spectrometer	1.3 x 2.25	10	384 (16 days)	0.25% (1 ppm)
Minicarb	FTS	8 x 16	TBD	TBD	0.25% (1 ppm)
GOSAT-2	FTS	10.5	790 (1)	72 (3 days)	1% (4 ppm)
CarbonSat	Spectrometer	2.0 x 2.0	500	144 (6 days)	0.5% (2 ppm)
ASCENDS	Laser Spectrometer	0 (2)	0 (2)	384 (16 days)	0.25% (1 ppm)
GOSAT-3	Laser Spectrometer	0**	0**	TBD	TBD
ladir Emission, Total	Troposphere Columns w	reighted to the	Mid-Trope	osphere and Uppe	r-Troposphere 0.4% (1.5 ppm)
EOS-AURA	TES	0.5 x 5.0	50	384 (16 days)	0.3% (1.3 ppm)
METOP and NOAA	HIRS	10	2240	12 hours	1% (4 ppm)
Metop (A,B,C)	IASI	12	2052	12 hours	0.5% (2 ppm)
FY-3 (C,D,E,F,G)	IRAS	17	952	12 hours	0.5% (2 ppm)
NPOESS (1,3,4)	CrIS	14	2200	12 hours	0.5% (2 ppm)

CDR Inventory Database Next Steps

- Add data from other agencies
- Review the existing data for errors
- Provide additional detailed information like maturity index data, calibration instrument sources, etc.
- Work with the CEOS MIM team to ensure all necessary linkages from instruments to measurements exist
- Develop a survey and/or work with MIM team to incorporate the ECV data into the annual EO Handbook Data Call
- Additional query ability to view data by measurement products, source instruments, agencies, etc
- Anything else?