SEA ICE CLIMATE DATA RECORDS

From an NSIDC perspective

Walt Meier

Contributions from:

Florence Fetterer, Ann Windnagel, Scott Stewart, Trey Stafford

National Snow and Ice Data Center Advancing knowledge of Earth's frozen regions

AFFILIATIONS

Sponsors

University of Colorado Boulder

National Aeronautics and Space Administration

Cooperative Institute for Research in Environmental Sciences

National Science Foundation

World Data System

National Oceanic and Atmospheric Administration

NASA SNOW AND ICE DAAC AT NSIDC

https://nsidc.org/data/data-programs/nsidc-daac

- DAAC = Distributed Active Archive Center
- NSIDC DAAC archives snow and ice, and other related geophysical parameters, from NASA satellite, airborne, and field missions
 - Passive microwave sea ice products
 - MODIS/VIIRS snow and ice products
 - ICESat, IceBridge, ICESat-2 (altimeters)
 - SMAP
- Amanda Leon, NSIDC DAAC Manager

NOAA@NSIDC

https://nsidc.org/data/data-programs/noaa-nsidc

- NOAA archive center for snow and ice data
 - NOAA/NSIDC Sea Ice Concentration Climate Data Record
 - Sea Ice Index monthly and daily images and extent values
 - Operational ice charts and climatologies
 - Data rescue efforts
 - SCICEX submarine data
 - Glacier photo collection
- Florence Fetterer, Program Manager
- Ann Windnagel, Project Manager

U.S. National Ice Center Marginal Ice Zone Chart

SEA ICE CONCENTRATION FROM PASSIVE MICROWAVE SENSORS

- Strengths
 - Complete daily coverage
 - All-sky capability
 - Continuous long-term record
 - Consistent sensor characteristics
- Limitations
 - Low spatial resolution
 - Surface ambiguities from heterogenous characteristics
 - Surface melt
 - Thin ice
 - Snow
 - Atmospheric emission (weather)
 - Land-spillover (mixed ocean-land)

36.5 GHz TB V-H Polarization Difference

SEA ICE CONCENTRATION FROM PASSIVE MICROWAVE SENSORS

- Strengths
 - Complete daily coverage
 - All-sky capability
 - Continuous long-term record
 - Consistent sensor characteristics
- Limitations
 - Low spatial resolution
 - Surface ambiguities from heterogenous characteristics
 - Surface melt
 - Thin ice
 - Snow
 - Atmospheric emission (weather)
 - Land-spillover (mixed ocean-land)

36.5 GHz - 18.7 GHz TB V Polarization Difference

PASSIVE MICROWAVE SENSORS FOR SEA ICE

DMSP = Defense Meteorological Satellite Program SSMIS = Special Sensor Microwave Imager and Sounder AMSR = Advanced Microwave Scanning Radiometer WSF = Weather Satellite Follow-On MWI = Microwave Imager CIMR = Copernicus Imaging Microwave Radiometer

DEVELOPMENT OF PASSIVE MICROWAVE SEA ICE CONCENTRATION CLIMATE RECORDS

- NASA Team (NT) algorithm (NASA Goddard)
 - SMMR, original development, 1978 1987
 - SSMI-SSMIS, inter-sensor calibration for consistency, 1987 present
- NASA Bootstrap (BT) algorithm (NASA Goddard)
 - SMMR-SSMI-SSMIS, independent inter-sensor calibration, 1978 present
- NOAA/NSIDC Climate Data Record (CDR)
 - SMMR-SSMI-SSMIS, combined NASA Team and Bootstrap algorithms
- OSI-SAF/CCI, 1978 present
 - SMMR-SSMI-SSMIS, combined Bootstrap and Bristol algorithms
- AMSR-E and AMSR2 series from NASA, JAXA, OSI-SAF, 2002 present

INTERSENSOR CALIBRATION FOR SEA ICE

- Adjustment of algorithm coefficients ("tiepoints") via TB regression
- If needed, adjustment of weather filter threshold to match extent
- Inter-calibration of TB values is not absolutely necessary

Tiepoints for 100% surface types:

- Open water (OW)
- First-year ice (FYI)
- Multi-year ice (MYI)

Meier et al., 2020,, https://doi.org/10.3390/rs12142197

INTERSENSOR CALIBRATION FOR SEA ICE

- Tiepoints effectively vary through the year due to differences in surface conditions, especially during melt and freeze-up
- Bootstrap and OSI-SAF use "dynamic tiepoints" that adjust daily

VARIATION IN PM SEA ICE EXTENT

Extent = sum of all grid cell areas with > 15% ice

AMSR2 Products: Bremen ASI, JAXA Bootstrap, NASA Team 2, OSI SAF SSMIS Products: NOAA CDR, NSIDC NASA Team, OSI SAF Other Products: MASIE (analyzed multi-sensor)

From Sea Ice Outlook 2020 Post-Season Report, https://www.arcus.org/sipn/sea-ice-outlook/2020/post-season

NASA TEAM AND BOOTSTRAP ALGORITHM PRODUCTS

- Processed at NASA Goddard, delivered to NSIDC DAAC every ~3-6 months
- Sensor-specific adjustments to algorithm coefficients ("tiepoints") for intersensor calibration \rightarrow consistent time series
- Automated weather filters and land-spillover corrections
- Spatial and temporal interpolation to fill gaps
 Not documented!
- Manual corrections to remove errors
- No grid cell error estimates or quality indicators
- Until recently, flat-binary with limited or no file-level metadata (now NetCDF)
- NSIDC DAAC produces a NRT version of the NASA Goddard product, updated daily with 24-hour latency – no manual QC

NASA Team, DiGirolamo et al., 2022, https://doi.org/10.5067/MPYG15WAA4WX Bootstrap, Comiso, 2023, https://doi.org/10.5067/X5LG68MH0130 NRT NASA Team, Meier et al., 2021, https://doi.org/10.5067/YTTHO2FJQ97K

NOAA/NSIDC SEA ICE CONCENTRATION CDR

- Combined NASA Team and Bootstrap algorithm
- Processed at NSIDC
- Software publicly available

- All processing is automated, no manual QC
- Error estimates at every grid cell
- NetCDF4 with CF metadata
- NRT version provided

NOAA/NSIDC CDR Version 4, Meier et al., 2021, https://doi.org/10.7265/efmz-2t65 NRT CDR Version 2, Meier et al., 2021, https://doi.org/10.7265/tgam-yv28

FCDR INPUT TO NSIDC SEA ICE

N SIDC

COMPARISON OF CDR, NT, AND BT CONCENTRATION

Northern Hemisphere

Meier et al., 2022, Remote Sensing, https://doi.org/10.3390/rs14030619

COMPARISON OF CDR, NT, AND BT CONCENTRATION

Bias in NT concentrations in Antarctic is also well-known.

COMPARISON OF CDR, NT, AND BT EXTENT

Extent = sum of all grid cell areas with > 15% ice

Difference in inter-sensor adjustments, particularly with NASA Team

NSIDC

COMPARISON OF CDR, NT, AND BT AREA

Area = sum of all grid cell areas with > 15% ice, with each cell weighted by its concentration

Inter-sensor calibration has less effect on area.

REGIONAL TRENDS: NORTH, 1979 – 2020

NH CDR Regional Extent Trends and Difference with BT and NT

• Trends negative and statistically significant in all regions

• Trend differences generally small relative to trends

Meier et al., 2022, Remote Sensing, https://doi.org/10.3390/rs14030619

CDR-BT Trend

CDR-NT Trend

 \rightarrow Trend 2 σ range

REGIONAL TRENDS: SOUTH, 1979 – 2020

SH CDR Regional Extent Trends and Difference with BT and NT

- Trends positive in most regions
- Negative trend in Bellingshausen-Amundsen Sea region
- Trends are not statistically significant
- Trend differences at a similar scale as trend values

NSIDC SEA ICE INDEX: VALUE-ADDED CLIMATE INDICATORS AKA "EASY DATA"

Managed by NOAA@NSIDC

Sea Ice Extent and Sea Ice Area

- Spreadsheet data values
- Regional and hemispheric values
- Timeseries graphs

Images

- Extent
- Extent Trend
- Concentration
- Concentration Anomaly
- Concentration Trend

Currently uses the NASA Team product

Sea Ice Index: Fetterer, et al., 2017, https://doi.org/10.7265/N5K072F8

SEA ICE INDEX PROCESSING FLOW - CURRENT

SEA ICE INDEX PROCESSING FLOW - FUTURE

SII CONCENTRATION TRENDS - FEBRUARY

SII CONCENTRATION TRENDS - SEPTEMBER

ANNUAL MAXIMUM SEA ICE EXTENT TRENDS FROM SII

Southern Hemisphere Trend = +2,100±11,900 km²/yr

Northern Hemisphere Trend = -39,800 ± 6,100 km²/yr

ANNUAL MAXIMUM SEA ICE EXTENT TRENDS FROM SII

ANNUAL MINIMUM SEA ICE EXTENT TRENDS FROM SII

Northern Hemisphere Trend = -77,800 ± 11,900 km²/yr

Southern Hemisphere Trend = -4,700±10,200 km²/yr

ANNUAL MINIMUM SEA ICE EXTENT TRENDS FROM SII

No. Hemisphere, 2007-2023 Trend = $-800 \pm 46,100 \text{ km}^2/\text{yr}$

Southern Hemisphere 2022-2024 are three lowest years

OTHER SEA ICE CLIMATE RECORDS AT NSIDC

• Melt onset

Bliss et al., 2022, https://doi.org/10.5067/TRGWQ0ONTQG5

Motion

Tschudi et al., 2019, https://doi.org/10.5067/INAWUWO7QH7B

• Age

Tschudi et al., 2019, https://doi.org/10.5067/UTAV7490FEPB

• Freeboard/Thickness

ICESat/IceBridge/ICESat-2, CryoSat-2

Kwok et al., 2023, https://doi.org/10.5067/ATLAS/ATL10.006
Petty et al., 2023, https://doi.org/10.5067/ZCSU8Y5U1BQW
→ Not yet mature enough or of sufficient length for a CDR

FUTURE WORK, CURRENTLY IN PROGRESS

- Add AMSR2 to NOAA/NSIDC CDR for future resiliency (CDR V5)
 - Initially, a parallel concentration parameter to the primary SSMIS SIC CDR
 - AMSR2 inter-calibrated with SSMIS with adjustments to match ice edge
 - AMSR2 (or AMSR3) will be ready to "take over" CDR time series from SSMIS
- Transition Sea Ice Index use CDR
 - Full provenance and transparency for Sea Ice Index
 - Initially, CDR source will be internal for QC and comparison with NT source
- Improvements to NASA (NT and BT) algorithms (with NASA Goddard)
- Consider changing to CSU/L1C for source TBs for all SIC products
- Prepare for future sensors (JAXA AMSR3, WFS MWI-M1, EPS-SG-B1 MWI)

THANK YOU!

- The NASA Team and Bootstrap algorithm products are supported by the NASA Snow and Ice DAAC and the NASA Earth Science Data Information Systems Project (ESDIS).
- The NOAA/NSIDC Sea Ice CDR is supported by NOAA NCEI and the NOAA Climate Data Record program.
- The Sea Ice Index and NOAA@NSIDC are supported by the NOAA cooperative agreement NA22OAR4320151, for the Cooperative Institute for Earth System Research and Data Science (CIESRDS).

