

Intro & Recent Advances

Remote Data Access via OpenDAP Web Services

ESDIS Presentation & Demonstration for the CEOS Working Group on Information Systems & Services (WGISS) May, 2015

Dave Fulker, President of OpenDAP, subcontractor to Raytheon for NASA/ESDIS

Part I

Introduction to OpenDAP* Web Services

*OpenDAP is an organization and an acronym:

"Open-source Project for a Network Data Access Protocol"

OpenDAP Concepts

originally from Distributed Ocean Data System (DODS) circa 1994

Retrieve

dataset descriptions (metadata)

dataset content (typed/structured)

Retrieval protocol built in to multiple libraries

flexible data typing

arrays (~coverages)

many, diverse clients

tables (~features)

*dataset ≈ granule

URL ≈ Granule* per OpenDap's Data Access protocol (DAP)

http://laboratory.edu/device/experiment/granule.dmr

Domain name often is an organization's web server.

Servers often have hierarchical collections.

Each URL references a distinct DAP "dataset."

Suffixes specify return types.

Depending on suffix, DAP returns metadata or content, with options for human- or machine-readable forms (XML, NetCDF4...). Suffix "dmr" — metadata only.

*dataset \approx granule

OpenDAP Datatype Philosophy

For simplicity...

Structures & attributes > rich syntax & semantics

These types support many domain-specific needs

A recent crawl* (23,000 domains in .gov, .edu, .org) found >1400 collections with DAP servers

^{*}Performed by the National Snow & Ice Data Center in an NSF/EarthCube project

OpenDAP services Function as Middleware

- Data ingest via encoding-specific adapters
 - Handlers for a growing set of source-data types
- Multiple response encodings
 - Native DAP—useful in Python, Java, C++ ,Fortran...
 - netCDF (also GeoTIFF where possible)
 - \Rightarrow XML (\Rightarrow HTTP via style sheets)
 - Recently added: WMS, W10n (JSON), WCS (beta)

Architectural Overview of Hyrax

a widely-used DAP server

Data-User App (netCDF-based) netCDF Libraries Data-User App (python, java, c++)

Native-DAP Libraries Data-User App (other standard)

> OGC-Compliant

Browser-Only

XML or JSON

DAP(2 | 4), netCDF, XML, GeoTIFF, WMS, JSON...

Other Web Services Core DAP
Services
(Hyrax Front-End)

DAP-Extending Services Other Web Services

Apache Server Framework

Hyrax Back-End Server with Encoding-Specific Handlers

HDF files

netCDF files

text files

SQL database

extensible...

URL + Query → Subset & (future) results from other server functions

http:/.../granule.nc4?dap4.ce=constraints&dap4.func=functions

Dataset identifier as above, except return-type is NetCDF4 (= HDF)

DAP "constraint expressions" yield sub-arrays & other proper subsets

DAP4 "function expressions" enable extensions

Constraints specify subsets by variable names, by array indices & (for tables) by content. Likely extensions include statistics, UGRID subsetting, feature extraction...

The query form &dap4.func=... enables DAP extensions \Rightarrow new <u>server functions</u>

DAP-based Subset Selection (from arrays | tables)

- Select variables by name
 - For tabular data, this means selecting columns
- Select rows of a table via column-specific value constraints
 - Allows both domain-based & range-based subsetting
- Select sub-arrays by constraining their indices

(array-style)

OpenDAP

Index-Constrained Subsetting

Source Array

Sub-Array (response)

caveat — Index-Based Subsetting

- Subset selection not based on domain coordinates
- Source is not organized as <u>coordinate-mapped</u> arrays
- Desired subset is polygonal or is skewed (relative to source-array orientation)

Part II

Recent Enhancements of OpenDAP Web Services With Demonstrations

This part of the presentation is drawn primarily from a project report on:

NASA Data Interoperability

An EOSDIS Presentation & Demo Originally given March 27, 2015

Original Presenters: James Gallagher & Nathan Potter (OpenDAP)

main NASA motivations for OpenDAP Enhancements

- Easier software builds & better documentation
- Authentication of data users
- More response encodings
 - Open Geospatial Consortium (OGC) Web Services (WMS, WCS...)
 - JavaScript Object Notation (JSON) for Webification (w10n)
- Requesting DAP ops on many granules at once
 - Response = concatenated CSV (arrays > tables) or
 - Response = zipped files

OpenDAP Server Installation

- **Context**
 - Hyrax-install complexity was once a barrier to use
- **Key Accomplishments**
 - Adding modules does <u>not</u> increase the package count
 - Source build: now just 3 distinct packages
 - Previously 18 packages
 - Binary install: now just 2 RPMs + 1 WAR
 - Previously 15 RPMs + 1 WAR

progress enhancing OpenDAP's Website & Documentation

- Various Website repairs
- 760 fixed links (from automated before/after crawls)
- Five documents added
 - Client configuration for authorization
 - Server configuration for authorization
 - Source-code build how-to
 - Summary of Winter-2015 ESIP-panel on Web-services performance
 - Server configuration for WMS provision

User Authentication (via EarthData login at NASA EOSDIS)

- Context/Things to Notice
 - Fine-grained access control for <u>individual</u> directories
 - ➢ Demo is Web-only, but cURL tests work as well
 - cURL—like most client applications—is built around libcurl, thus serving as a lowest common denominator
 - EarthData credentials are simply stored in a user's .netrc file

prior context for enhancing Multi-Granule Aggregation

- But until now, end users could not choose
 - Granules to be aggregated
 - Forms of aggregation
- Furthermore, array- & table-style subsetting could not be <u>mixed</u> (with or without aggregation)

- Context/Things to Notice
 - Request data from 1,000s of files with one operation *N.B.* Necessitates use of HTTP POST (to avoid huge URLs)
 - Two forms of aggregation response
 - Zipped netCDF files
 - Concatenated tables (CSV)

N.B. Arrays may be aggregated <u>as concatenated tables!</u>

Live Demo...

DAP Output-Encoding Extensions

OGC Protocol: WMS Web Mapping Service

- Great for 2-dim geospatial data on 'maps' (but not for higher-dimensional data types)
- A bridge to display tools, notably, Google Earth

DAP Interoperability Leverage

Data-User App (netCDF-based) netCDF Libraries Data-User App (python, java, c++)

Native-DAP Libraries Data-User App (other standard)

> OGC-Compliant

Browser-Only

XML or JSON

Other Web Services DAP(2 | 4), netCDF, XML, GeoTIFF, WMS, JSON...

Core DAP
Services
(Hyrax Front-End)

DAP-Extending Services Other Web Services

Apache Server Framework

Hyrax Back-End Server with Encoding-Specific Handlers

HDF files

netCDF files

text files

SQL database

extensible...

relevance:

OpenDAP & Interoperability

- **We demonstrated**
 - NASA (HDF5) files → OpenDAP → WMS → Google Earth
- Notably, it seems unlikely that either
 - Google Earth engineers anticipated reading HDF5 or
 - NASA engineers planned to display data on Google Earth!
- This suggests* a definition for interoperability: "supporting unanticipated uses"

*Paraphrasing John Orcutt

This presentation, and the recent work described, were supported by NASA/GSFC under Raytheon Co. contract number NNG10HP02C

Raytheon

