NASA Agency Report

Andrew Mitchell

WGISS-53

Virtual

24 March 2022

CCP

aufiliet febilit

NASA Agency Report Executive Summary

- Delivered nearly billion products to over 4 million users in FY20 ((Oct. 1, 2020 to Sept. 30, 2021) to every country in the world representing an increase of 100 million products from FY20. 1,502 new and reprocessed datasets were added to the EOSDIS collection in FY21.
- NASA Earth Observing System Data and Information System (EOSDIS) data have been distributed to 195 independent countries
- Provided data stewardship to almost 13,000 unique data sets for which we have minted over 9700 digital object identifiers that enable users to track data sets through publications and documentation.
- By the end of FY21, had archived over 59 Petabytes of Earth Science data at a rate of 53 terabytes per day. This was a 34% increase from FY20. Over 15 petabytes are available in Amazon Web Services (AWS).
- Scored 81 on the American Customer Satisfaction Index (ACSI) survey an increase of two points from last year's score of 79. This continues the trend of high scores for EOSDIS performance, despite the pandemic, a shift to working from home, and changes in our NASA missions and the research community schedules and plans.
- Undergoing an Open Sourced Science for Earth System Observatory (ESO) Mission Science Data Processing Study with the goal of: Identify and assess potential architectures that meet the ESO mission science data processing objectives, promote open science principles, enable data system efficiencies, and support earth system science and applications.

Earth Science Data and Information System (ESDIS)

- The ESDIS Project manages the science systems of the Earth Observing System Data and Information System (EOSDIS).
- EOSDIS is a comprehensive distributed Earth science data and information system designed to support NASA's Earth science missions.
- EOSDIS is designed to ingest, archive, distribute, visualize, all types of Earth Science data which include:
 - field campaign measurements, airborne data, in situ data, model data, ancillary products used for processing and other related datasets.
- The ESDIS Project provides and controls all aspects of the effort including but not limited to requirements, design, acquisition, development, operations, maintenance and decommission.

EARTH SYSTEM OBSERVATORY

CCP

SURFACE BIOLOGY AND GEOLOGY

Earth Surface & Ecosystems

CLOUDS, CONVECTION AND PRECIPITATION

Water and Energy in the Atmosphere

AEROSOLS

Particles in the Atmosphere

SURFACE DEFORMATION AND CHANGE

Earth Surface Dynamics

MASS CHANGE

Large-scale Mass Redistribution

000

Discipline Specific, Distributed, Active Archive Centers (DAACs) Science Investigator-led Processing Systems (SIPS) Socioeconomic Data and Applications Center Land Processes DAAC **Goddard Earth Sciences** Human Interactions, Land Use, Land Cover, Surface Reflectance, Environmental Sustainability, Geospatial Data Data and Information Radiance, Temperature Topography, Vegetation Indices **Services Center** Global Precipitation, Solar Irradiance, Atmospheric Composition, and Dynamics, Global Modeling **National Snow** and Ice Data **Center DAAC** Frozen Ground, Glaciers, I ce Sheets, Sea Ice, Snow, Soil Moisture Suomi National Polar-orbiting **Crustal Dynamics** Partnership (Suomi-NPP) **Physical** Data Information System Atmosphere Oceanography Space Geodesy,Solid Earth **Ocean Biology DAAC** DAĂC Ocean Biology, Sea Surface Gravity, Sea Surface Temperature Temperature, Ocean Winds, Topography, **Oak Ridge** Circulation & Currents National Laboratory Measurements DAAC of Pollution Ozone Mapping Level 1 and Profiler Suite (OMPS) in the Biogeochemical Dynamics, Atmosphere Ecological Data, Troposphere Environmental Processes Archive and (MOPITT) Suomi National Distribution Polar-orbiting **Ozone Monitoring** System Partnership Instrument (OMI) (LAADS) Global Hydrometeorology Resource Center DAAC (Suomi-NPP) (ÁTMS) MODIS Level-1 and (CrIS) Sounder Ozone Mapping Profiler Suite (OMPS) and Atmosphere Hazardous Weather, Lightning, Tropical Cyclones and Storm-induced Hazards Data Products Microwave Limb Sounder (MLS) LaRC Atmospheric **Ocean Data Processing** Science Data Center Advanced System (OCDPS) Microwave Radiation Budget, Clouds, Aerosols, Tropospheric Chemistry Scanning Alaska Satellite Radiometer for EOS 2 Facility DAAC (AMSR-E/2) SAR Products,Sea Ice, Polar Processes,Geophysics

MODIS Adaptive Processing System (MODĂPŠ) Visible Infrared Imaging **Radiometer Suite** (VIIRS) Land

Ozone

Ozone

Millions

010

Motivation for Commercial Cloud

NASA

Motivation for Cloud

Projected Data Volumes

Growth of Mission Data & Processing: Projected rapid archive growth and the need to effectively process significantly larger volumes of new mission data requires **rethinking existing architectures**.

Data Systems: More cost-effective, flexible, and scalable data system ingest, archive, and distribution solutions are needed to **keep pace with new mission advancement**.

Science Users: Significantly larger data volumes
requires additional ways to access and utilize this
data, with "Data Close to Compute" or Data Lake".
Bring Algorithms to the cloud.

Current User Interaction

User must download data from centers across the US

What's Good: decentralization means that systems are independently available; minimize the decentralized view by common functions (Earthdata Search)

What's Not So Good: user has to get data from each location; user must invest in processing capacity; having many interfaces is confusing and complicated

Envisioning an EOSDIS "Data Lake"

Evolution of EOSDIS in the 2020s

- Move data into commercial cloud where all is accessible
- Make data versions in the Cloud analysis ready
- Provide common services on the data \
- Enable easily understood access/use in the Cloud

User now goes to one location to get data - still has ability to download data, but will be able to use even more services that will be available in a common environment

ASF ASDC CDDIS GESDISC GHRC LAADS LPDAAC NSIDC ORNL OBDAAC PODAAC SEDAC

The EOSDIS Data Lake is part of a suite of EOSDIS Cloud capabilities:

- Core cloud compliance, security, reporting, cost control, and metrics capabilities
- EOSDIS application and service hosting capabilities
- EOSDIS data hosting capabilities

Our Elevator Pitch

By hosting NASA's Earth science data in the cloud, EOSDIS is able to realize several end user benefits:

- Power: Any user can access big processing power "next to" Big Data.
- **Performance**: Data can be offered in a form enabling high-performance analysis.
- Freedom from Data Transfers: Users need not move Big Data.
- Freedom from Data Management: Users need not store and manage Big Data.
- **Data Co-location**: Users can easily work with multiple EOSDIS datasets together.
- Choice: Users can still download data if they prefer.

Free image from https://www.dreamstime.com/photosimages/elevator-pitch.html

Earthdata Cloud -EDC-

Improve the efficiency of NASA's data systems operations – <u>continues free and open access to data</u>

- Prepare for planned high-data-rate missions
- Increase opportunity for researchers and commercial users to access/process PBs of data quickly without the need for data management

NASA

NASA Earthdata Cloud (EDC) – http://earthdata.nasa.gov

Transparent/extendable open source processing framework

Components of the Earthdata Cloud

Cloud Platform Infrastructure

Common Services & Controls

What is the Earthdata Cloud Platform?

Earthdata Cloud Platform (NGAP - NASA General Application Platform) is a multi-account, Infrastructure-as-a-Service (IaaS) cloud platform operating on Amazon Web Services (AWS), providing shared cloud services and controls to EOSDIS.

- 1. NASA-Approved Amazon Web Services (AWS): vetted AWS and thirdparty Software-As-A-Service (SAAS) services and process to add new. Focus is on using AWS cloud-native services
- 2. Code Deployment Services: DevOps Continuous Integration Continuous Delivery (CICD) Pipeline to security scan, build, and deploy code
- **3.** Use of Infrastructure as Code: including re-useable template to define a multi-account ecosystem
- 4. Single System Security Plan (SSP) and Authority to Operate (ATO)
- 5. Single Identity and Access Management Solution (CloudTamer.io):
 - Rotate AWS access keys
 - Apply session limits
 - Provide role-based access control
 - two-factor authentication

Unifying Ingest & Archive in the Cloud: Cumulus

What is Cumulus?

Custom built, open source, lightweight, cloud-native framework for data ingest, archive, distribution and management

A lightweight framework consisting of:

<u>**Tasks</u>** a discrete action in a workflow, invoked as a Lambda function or EC2 service, common protocol supports chaining</u>

Orchestration engine (AWS Step Functions) that controls invocation of tasks in a workflow

Database store status, logs, and other system state information

Workflows(s) file(s) that define the ingest, processing, publication, and archive operations

Dashboard create and execute workflows, monitor system

Unifying Data Services in the Cloud: Harmony

Historically, EOSDIS DAACs have all provided their own tooling with diverse interaction patterns and APIs. Harmony is our ongoing effort to revisit these siloed capabilities in a more harmonized manner.

NASA Earthdata Cloud (EDC) – http://earthdata.nasa.gov

EOSDIS Conceptual Cloud Based Architecture

Open Sourced Science for Earth System Observatory (ESO) Mission Science Data Processing Study

STUDY GOAL:

Identify and assess potential architectures that meet the ESO mission science data processing objectives,

- promote open science principles,
- enable data system efficiencies,
- support earth system science and applications.

Aligns with the challenge set by NASA to create a single observatory that combines data from the ESO missions to understand the earth as a system and accelerate our ability to apply this understanding.

Definition of a Mission Science Processing System

The set of algorithms, software, compute infrastructure, operational procedures, and documentation to automatically process raw instrument data through to science quality data products.

This includes the software tools that support the development of the processing algorithms and validation and analysis of the processed data.

Science data products out

Study Approach

Workshop #1: October 19-20, 2021

Receive input from NASA Program Offices and ESO Missions on requirements, constraints, recommendations, and opportunities for science data processing. Report available on Study Website.

Workshop #2: March 1-4, 2022

Understand the current state of mission and science data processing and obtain community input.

Architecture Study: April – July, 2022

Analyze the architectural options and identify an optimal solution for the ESO missions.

Workshop #3: August, 2022 Report out on the study and make a recommendation to Kevin Murphy, SMD Chief Scientific Data Officer.

Workshop #2 Goals

- Understand the current state of mission science data processing: •
 - NASA Earth missions (flagship and PI-led missions) NASA Astrophysics missions •
 - •
 - Other federal agency and international missions. •
- Understand opportunities for collaboration with systems that • interface with and enable mission processing systems.
- Learn from other big-data processing systems •
 - Based on input received through a "Requestion For Information" solicitation
- Gain community insights and recommendation •

Deliverable: Report of findings

Additional information is available at:

http://earthdata.nasa.gov/

