Machine Learning in Marine Research at PML, UK

David Moffat
Few-Shot learning for the identification of FlowCam plankton images

Elaine Fileman, Jim Clark, Anjan Dutta, Oliver Fawcett

APICS project performing on the fly classification of plankton taxa

Using **few shot learning** approach

Building pipelines for measuring plankton quantity and matching up with Satellite Imagery
Detection and Classification of Floating Plastic Litter Using a Vessel-Mounted Video Camera and Deep Learning

- Detect floating plastic litter
- Apply to ship mounted camera
- Scale to range of different platforms
- Investigate embedded system, for real time classification
- Using YOLO algorithm – Convolutional Neural Network

Several sites have been reported in unfavourable condition, due to the alteration of the biotopes, and therefore the loss of original species and biotopes which make up the protected habitat features. If unmanaged the expansion of dense Pacific oyster populations will most likely reduce the extent of the sites and could reduce species richness and change community composition, as well as their diversity.
Detection of ship tracks

Duncan Watson-Parris, Angus Laurenson, Dan Clewley

Nitrate aerosols are released from ship exhausts every day. Under certain conditions, they can seed bright clouds that trail from the ship, known as "shiptracks". We measured these clouds using satellite imagery and discovered that there is a visible drop from 2019 to 2020, due to a change in ship fuel regulations that reduced the nitrogen content allowed in fuel world-wide.

Deep learning detection of Harmful Algal Blooms

Silvia Pardo, David Moffat, and Gavin Tilstone

- Harmful algal blooms are rare but distinct events
- We use a contrastive learning approach to compare two images and measure how similar they are.
- Learn general images of the ocean (OLCI 2017 – 2021)
- Identify unique signature of each image
- Compare two images and measure how similar they are
- Approach works with limited data and rare events

Karenia mikimotoi & Noctiluca scintillans in English Channel (20 Jul 2000)
Global Mangrove Monitoring
Bunting, Awty-Carroll, Clewley

Developing deep learning approaches to classify and track mangroves, globally. Using training data from Global Mangrove Watch, the AI approach allows higher spatial and temporal resolution tracking of mangroves, particularly in challenging areas.
Oil Spill Detection

Plymouth Marine Laboratory have developed a ML approach to automatically detect oil spills in SAR satellite data, which we have tested out for operational use off the west coast of Africa.
Offshore Windfarm Monitoring

Monitoring the development of windfarms over time around UK Coast
Develop ESA product of Particulate Inorganic Carbon

ML Derived PIC

Spatial maps of (a) colour-index-derived PIC, and (b) random-forest-derived PIC using a monthly OC-CCIv5 data (Dec. 2020).

Scatter plot of in situ PIC, colour-index-derived PIC (Mitchell et al., 2017), and random-forest-derived PIC match-up data versus latitude of mean AMT cruise tracks.

https://oceancarbonfromspace2022.esa.int/
Optical Water Type (OWT)

- Fuzzy clustering (c-means)
- Fitted (automated) to a representative sample of ocean colour reflectance data
- Applied to reflectance data at global scale
- Each spectrum has a degree of membership to every cluster
- Dominant cluster loosely segments the ocean into regions with similar reflectance

Dominant optical waterclass per pixel, OC-CCI v5.0 data.
8-day composite image of June 2nd to June 10th 2019.
Are there any questions?

dmof@pml.ac.uk