

GEOSS/AIP and CEOS coordination on Disaster Management

John Evans (GST) Karen Moe (NASA) George Percivall (OGC)

Introduction

- Satellite data can support all phases of disaster mgmt.:
 - Response
 - Recovery
 - Risk Assessment / Mitigation
 - Forecasting
- Challenge: Rapid, effective access to customized, complex data and services from multiple remote sensing sources, for diverse users, across international and organizational boundaries

Satellite data in Disaster Management: Barriers to efficient / effective use

- Int'l disaster management involves:
 - Many activities by many players
 - Many ad hoc arrangements
- New suppliers: Unclear how to apply their data / services for effective use in disaster management
- New users: Unclear what data / services are available / suitable for use, and how to access or use them
- I.T. & R.S. planners: Unclear what resources are most needed ... redundant ... shared ... missing ... interdependent ... isolated
- Partnerships, roles, standards, shared vocabulary often unclear
- No shared, precise understanding of processes, information & computation resources, and various user needs

Other challenges

- Some data have restrictions (who; when): this prevents
 - Use by entire end user communities
 - Continued access to products for ongoing recovery and research
- Major effort involved in getting just the right data
 - When drawing on multiple data sources, many datasets may be available; most are complex; and not all are equally useful
 - Based on space, time, sensor characteristics, quality, and other factors
 - End users often under pressure in a crisis situation. Need to work with users and suppliers in advance of the crisis.
 - Need tools to help end users get (only) the information they need; to match products to audiences; and to facilitate rapid use of products.
- Degraded or inadequate network infrastructure
- Outdated or inadequate basemaps (e.g., DEMs)

GEOSS Architecture for The Use of Satellites in Disaster management and Risk Assessment

(GA.4.D)

- Characterize and evaluate disaster response processes
- Draw on case studies and proof-of-concept prototypes
 - to ground the architecture in real-world practice
- Use a well-defined architecture framework to describe the GEOSS disaster management enterprise as a whole
 - Using RM-ODP viewpoints: enterprise, information, computation
 - Key classes of people, components, processes, services, products
 - Shared understanding of relationships and interdependencies
 - Common terminology and high level interfaces
 - Apply and extend GEOSS Architecture Implementation Pilot (AIP)
- Infer requirements and opportunities for data systems
 - *e.g.*, CEOS, UN-SPIDER, and other portals
 - e.g., search indexing; access interfaces; data priorities
 - Capture lessons learned; recommended standards and products suitable as building blocks for sustainable capability

GA.4.D – Content & Structure

Building on practitioner experience, GEOSS priorities and principles, and AIP-5 RFP architecture

- Scope & purpose based on CEOS WGISS charter; GEOSS Strategic Targets; GEO Task DI-01
- GEOSS principles
 - System of Systems
 - Data Sharing Principles
 - Interoperability Arrangements
- Disaster types ¹
 - Flooding Earthquakes Volcanoes Drought
 - Windstorms Landslides Wildfires Tsunamis
- Lifecycle phases¹
 - Mitigation Warning Response Recovery

¹ CEOS / GEO DI-06-09 report, Use of Satellites for Risk Management (11/2008)

Information content & semantics Information Viewpoint

- General-purpose concepts from AIP-5 Architecture
 - Spatial referencing Feature Model Data Quality / Provenance – Data Policies and Licensing – etc.
- Observation needs by disaster type & phase based on
 - CEOS / GEO DI-06-09 report, Use of Satellites for Risk Management (Nov. 2008)
 - GEO report, Critical Earth Observations Priorities (Oct. 2010)
 - GEOSS 10-Year Implementation Plan Reference Document (2005)
- Metadata
 - Locating & identifying relevant data
 - Assessing fitness for use
 - Georeferencing
- Semantics / semantic translation

- Cross-cutting needs:
 - Frequent, high-resolution observations
 - Esp. for earthquakes, floods
 - Basemaps e.g.,
 - Digital terrain models Water boundaries Ground control points
- Data operations
 - Preprocessing (e.g., decoding, georeferencing, atmospheric correction "Level 1")
 - Analysis & Interpretation (incl. feature extraction)

- Computation and Services Computation Viewpoint
- Generic service types from AIP-5:
 - Catalog Registration & Search
 - Portrayal / Display / Styling
 - Data Access & Ordering
 - Processing algorithms
 - Sensor access & control
 - User management
- Disaster-specific service types:
 - Event detection
 - Sensor tasking
 - Data Analysis / Interpretation

Namibia Flood Pilot Sensor Web Concept

- Cross-cutting needs:
 - Near-Real-Time data access / delivery
 - Data broadcast
 - Cross-community interoperability
 - Ease of use; ease of operation / maintenance
 - "Last mile" to end-users (incl. telecommunications infrastructure)
- Service-Oriented vs. other
 - Broadcast / push (LDM, GeoNetCast)
 - Physical media delivery

Functions involved in Satellite Data Support

to Disaster Management

Phases of Capability

- System initiation vs. operations in each disaster lifecycle phase
- Initiation: identify or develop ...
 - Inputs for event detection, event triggers
 - Indicators for situational awareness (e.g., flood extent)
 - Modeling elements (e.g., regional flood model)
 - Workflows and data flows (for processing and delivery)
 - Automation opportunities (e.g., subscriptions, custom products)
- Operations phase:
 - Monitor data streams, detect events & trigger workflows
 - Track key indicators
 - Task sensors; acquire data
 - Run models (hindcast, nowcast, forecast)
 - Analyze data
 - Disseminate / serve data products

Interactions with AIP-5

AIP-5 interactions: Activity Diagram CE®S

 UML Activity Diagram highlighted possible bottlenecks => opportunities to streamline

02_03 Activation of Disaster Management

Working Group on Information Systems and Ser

AIP-5 interactions: Enterprise Modeling **CE®S**

- Requires articulating important details:
 - The *community*(ies) of concern to the enterprise
 - The links between community policies & objectives, contracts, and behaviors (=> actions => processes)
 - The actors / roles who conduct actions & processes
 - The *resources* used by actions & processes
 - The artefacts produced / changed / deleted by actions

AIP-5 interactions: Enterprise Modeling CE®

Norking Group on Information Systems and Services

GEOSS Architecture Implementation Pilot (AIP-5) http://www.ogcnetwork.net/Alpilot

GEOSS Architecture for the use of Satellite Data in Disaster Management and Risk Assessment (GA.4.D) <u>http://tinyurl.com/GA4Disasters</u>

