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Abstract88

The ocean plays a central role in modulating the Earth’s carbon cycle. Monitoring
how the ocean carbon cycle is changing is fundamental to managing climate
change. Satellite remote sensing is currently our best tool for viewing the ocean
surface globally and systematically, at high spatial and temporal resolutions, and
the past few decades have seen an exponential growth in studies utilising satellite
data for ocean carbon research. Satellite-based observations have to be combined
with in-situ observations and models, to obtain a comprehensive view of ocean
carbon pools and fluxes. To help prioritise future research in this area, a workshop
was organised that assembled leading experts working on the topic, from around
the world, including remote-sensing scientists, field scientists and modellers,
with the goal to articulate a collective view of the current status of ocean carbon
research, identify gaps in knowledge, and formulate a scientific roadmap for the
next decade, with an emphasis on evaluating where satellite remote sensing may
contribute. A total of 449 scientists and stakeholders participated (47 % female,
53 % male), from North and South America, Europe, Asia, Africa, and Oceania.
Sessions targeted both inorganic and organic pools of carbon in the ocean, in both
dissolved and particulate form, as well as major fluxes of carbon between reser-
voirs (e.g., primary production) and at interfaces (e.g., air-sea and land-ocean).
Extreme events, blue carbon and carbon budgeting were also key topics discussed.
Emerging priorities identified include: expanding the networks and quality of
in-situ observations; improved satellite retrievals; improved uncertainty quantifi-
cation; improved understanding of vertical distributions; integration with models;
improved techniques to bridge spatial and temporal scales of the different data
sources; and improved fundamental understanding of the ocean carbon cycle, and
of the interactions between pools of carbon and light. We also report on priorities
for the specific pools and fluxes studied, and highlight issues and concerns that
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arose during discussions, such as the need to consider the environmental impact
of satellites or space activities; the role satellites can play in monitoring ocean
carbon dioxide removal approaches; to consider how satellites can contribute
to monitoring cycles of other important climatically-relevant compounds and
elements; to promote diversity and inclusivity in ocean carbon research; to bring
together communities working on different aspects of planetary carbon; and to
follow an open science approach. Overall, this paper provides a comprehensive
scientific roadmap for the next decade on how satellite remote sensing could
help monitor the ocean carbon cycle, and its links to the other domains, such as
terrestrial and atmosphere.

Keywords: Ocean, Carbon cycle, Satellite, Remote sensing89
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1. Introduction154

The element carbon plays a fundamental role in life on Earth. Owing to its155

ability to bond with other atoms, carbon allows for variability in the configuration156

and function of biomolecules such as DNA and RNA that control the growth and157

replication of organisms. Carbon is constantly flowing through every sphere on158

the planet, the geosphere, atmosphere, biosphere, cryosphere and hydrosphere,159

in liquid, solid or gaseous form. This flow of carbon is referred to as the Earth’s160

carbon cycle. It comprises of diverse chemical species, organic and inorganic,161

and many processes responsible for transformations and flow of carbon between162
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the different reservoirs. Although the total amount of carbon on Earth is relatively163

constant over geological time, the carbon content of the component spheres and164

reservoirs can change, with profound consequences for the climate of the planet.165

Since the establishment of the industrial revolution at the start of the 19th century,166

humans have been increasing the carbon content of the atmosphere through167

the burning of fossil fuels and land use changes, trapping outgoing long-wave168

radiation in the lower atmosphere and increasing the temperature of the planet.169

This anthropogenic increase in atmospheric carbon (in the gaseous form of170

CO2) has three principal fates: it can remain in the atmosphere, be absorbed by171

the ocean, or be absorbed by vegetation on land. Latest estimates for the year172

2020 suggest that just under half of the anthropogenic CO2 emissions currently173

released (10.2±0.8 Gt C yr−1) remain in the atmosphere (5.0±0.2 Gt C yr−1), with174

just over a quarter being absorbed by the land (2.9±1.0 Gt C yr−1) and by the ocean175

(3.0±0.4 Gt C yr−1) (Hauck et al., 2020; Friedlingstein et al., 2022). Our ocean176

therefore plays a major role in regulating climate change. Understanding what177

controls the trends and variability in the ocean carbon sink is consequently a major178

question in Earth Science. Recent work from the Global Carbon project suggests179

model estimates of this sink are not in good agreement with observational-based180

evidence (Friedlingstein et al., 2022). Never before has it been so urgent to181

improve our understanding of the ocean carbon cycle.182

Monitoring the ocean carbon cycle is key to improved understanding. His-183

torically, ocean carbon cycle reservoirs and fluxes were monitored using in-situ184

methods, collecting data from ship-based platforms (dedicated research cruises185

and ships of opportunity), moorings and time-series stations (Karl and Winn,186

1991; Raitsos et al., 2014; Bakker et al., 2016; Olsen et al., 2016). Since the187

1970’s satellite observations have been used (Gordon et al., 1980; Shutler et al.,188

2019; Brewin et al., 2021) and recent years have seen the expansion of ocean189

robotic platforms for monitoring ocean carbon cycles (Williams et al., 2015, 2017;190

Gray et al., 2018; Chai et al., 2020; Claustre et al., 2020, 2021), both aiding191

the extrapolation of local in-situ measurements to global scale. Each of these192

platforms has advantages and disadvantages, and it is commonly accepted that an193
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approach integrating data from all platforms is required. There is also a need to194

use coupled physical and biogeochemical modelling, with the in-situ and satellite195

data, to estimates the pools and fluxes of carbon that are difficult to measure196

otherwise, at the required temporal and spatial scales.197

Satellites play a major role in our global carbon monitoring system. They are198

the only platforms capable of viewing our entire surface ocean and the air-sea199

boundary layer synoptically, at high temporal resolution. Consequently, the use200

of satellites in ocean carbon research has been expanding exponentially over the201

past 50 years (Fig. 1a). However, satellite instrumentation can only view the202

surface of the ocean (the actual depth the signal represents varies with wavelength203

and water composition), are constrained to operate in certain conditions (e.g.,204

passive visible systems are limited to cloud-free conditions and low to moderate205

sun-zenith angles) and at certain spatial and temporal scales, and are limited to206

collecting information that can be contained in electromagnetic radiation. To207

make full use of satellite observations for ocean carbon monitoring the remote-208

sensing community needs to work closely with in-situ data experts, physical and209

biogeochemical modellers, Earth system scientists, climate scientists and marine210

policy experts.211

With this in mind, the European Space Agency (ESA) with support from212

the US National Aeronautics and Space Administration (NASA), organised a213

virtual workshop called "Ocean Carbon from Space" in February 2022, building214

on a successful workshop organised in 2016 (Colour and Light in the ocean from215

Earth Observation; Sathyendranath et al., 2017a; Martinez-Vicente et al., 2020),216

and findings from a wide range of international initiatives (e.g., NASA EXport217

Processes in the Ocean from Remote Sensing (EXPORTS), ESA Ocean Science218

Cluster, ESA Climate Change Initiative (CCI), various European Commission219

Carbon Initiatives (e.g. Copernicus, such as OC TAC and MOB TAC), the Surface220

Ocean Lower Atmosphere Study (SOLAS), the Blue Carbon Initiative, the Global221

Carbon Project, International Carbon Observing System1). The workshop was222

also part of the CEOS (Committee on Earth Observation Satellites) workplan on223

1see https://oceanexports.org/; https://eo4society.esa.int/communities/scientists/esa-
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Aquatic Carbon (CEOS, 2021). The theme of the workshop was on ocean carbon,224

its pools and fluxes, its variability in space and time, and the understanding of its225

processes and interactions with the Earth system. The goal of the workshop was to226

bring leading experts together, including remote-sensing scientists, field scientists227

and modellers, to describe the current status of the field, and identify gaps in228

knowledge and priorities for research. In this paper, we synthesize and consolidate229

these discussions and produce a scientific roadmap for the next decade, with an230

emphasis on evaluating where and how satellite remote sensing can contribute to231

the monitoring of the ocean carbon cycle.232

2. Workshop details and approach to capture collective view of the status of233

the field234

2.1. Ocean Carbon from Space Workshop235

The "Ocean Carbon from Space Workshop" (https://oceancarbonfromspace2022.236

esa.int/) was organised by a committee of 15 international scientists, led by ESA237

within the framework of the Biological Pump and Carbon Exchange Processes238

(BICEP) project (https://bicep-project.org) with support from NASA. In addition239

to this organising committee, a scientific committee of 31 international experts on240

the topic of ocean carbon were assembled, who helped structure the sessions and241

review abstracts. These committees initially proposed a series of sessions, target-242

ing 16 themes, covering: the pools of carbon in the ocean (including particulate243

organic carbon, phytoplankton carbon, particulate inorganic carbon, dissolved244

organic carbon, and carbon chemistry, including dissolved inorganic carbon);245

the main processes (including marine primary production, export production,246

air-sea exchanges, and land-sea exchanges); and crosscutting themes (including247

the underwater light field, uncertainty estimates, freshwater carbon, blue carbon,248

extreme events, tipping points and impacts on carbon, climate variability and249

change, and the ocean carbon budget).250

ocean-science-cluster/; https://climate.esa.int/en/; https://www.copernicus.eu/en
https://www.thebluecarboninitiative.org/; https://www.globalcarbonproject.org/; https://www.icos-
cp.eu/; https://www.solas-int.org/about/solas.html
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The workshop was widely advertised, through a variety of means, including:251

email distribution lists; through international bodies like the International Ocean252

Colour Coordinating Group (IOCCG) and Surface Ocean Lower Atmosphere253

Study (SOLAS) networks; space agencies; and through social media platforms.254

Scientists and stakeholders working in the field of ocean carbon were invited255

to submit abstracts to the 16 themes and to participate in the workshop. The256

organising committee also identified key experts in the field who were invited to257

give keynote presentations.258

A total of 98 abstracts were submitted to the workshop, and based on the259

topics of these abstracts, the workshop was organised into six sessions combining260

various themes as needed, and covering261

• Primary Production (PP)262

• Particulate Organic Carbon (POC)263

• Phytoplankton Carbon (C-phyto)264

• Dissolved Organic Carbon (DOC)265

• Inorganic Carbon and fluxes at the ocean interface (IC)266

• Cross-cutting themes with three sessions:267

– Blue Carbon (BC)268

– Extreme Events (EE)269

– Carbon Budget Closure (CBC)270

The organisation committee identified chairs for each session, and abstracts were271

reviewed by the organisation and scientific committees, and assigned to oral or272

e-poster presentations. E-poster presentations were delivered through breakout273

rooms to help promote discussions. Each session included keynote speakers, oral274

presentations and importantly, time for discussing gaps in knowledge, priorities275

and challenges. There were four poster sessions covering the six themes of the276
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workshop. Participants were encouraged to upload their presentations or e-poster277

(under the form of a 1-3 slides presentation) prior to the conference start to278

facilitate knowledge exchange and prepare for workshop discussions.279

The workshop took place from 14th to 18th February 2022, following the280

international day of women and girls in science (Fig. 1a). Due to COVID281

restrictions, an online format was preferred (using the webex video conferencing282

software; https://www.webex.com). This resulted in a flexible schedule and283

programme designed to accommodate participants from different regions and284

time zones, and flexible working (e.g. child care responsibilities). A total of 449285

people from a wide geographical spread (Fig. 1b) participated, of which 47 %286

were female and 53 % male (Fig. 1c), reflecting an increasing participation of287

female scientists in ocean carbon science.288

2.2. Tools and approaches to capture collective view289

A series of tools and approaches were used to capture the collective view of290

the community and identify the major gaps, challenges and priorities, that fed291

into this scientific roadmap.292

Firstly, session chairs were asked to prepare statements on the main scientific293

challenges, gaps and opportunities of their session theme, prior to the start of the294

conference. All presenters (e-poster and oral) were also asked to include one slide295

about knowledge gaps and priorities for next steps on their work over the next296

decade. These statements were then used by session chairs to help structure the297

discussion slot organised at the end of each session. A final discussion session298

was held at the end of the workshop, whereby all session chairs were asked to299

join a panel to identify overarching themes.300

All sessions were recorded through webex. Throughout the workshop, we used301

Padlet software (https://en-gb.padlet.com), a cloud-based, real-time collaborative302

web platform which allowed participants to interact and upload thoughts they had303

on the scientific challenges, gaps and opportunities for each session, comment304

on those suggested by the chairs and other participants, all within virtual bulletin305

boards called "padlets". Following the closure of the workshop, session chairs306

were asked to provide a written synthesis of the main outcome of their sessions.307
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All scientific priorities, challenges, gaps and opportunities identified and308

discussed during the workshop, were organised into309

• Session-specific themes310

• Common themes311

• Emerging concerns and broader thoughts312

Table 1 provides an overview of the themes of the paper and guide to navigate313

this scientific roadmap.314

3. Session-specific theme outcomes315

In the following sections, we begin by providing a brief description of each316

session-specific theme, then briefly highlight the current state of the art, and finally317

focus on the identified priorities, scientific challenges, gaps and opportunities, to318

be targeted over the next decade.319

3.1. Primary production (PP)320

Primary production (PP, photosynthesis) channels energy from sunlight into321

ocean life, converting dissolved inorganic carbon (DIC), in the form of CO2, into322

phytoplankton tissue (e.g., C-phyto) that then fuels ocean food webs. Total PP is323

approximately the same on land and in the ocean (∼ 50 Gt C yr−1; Longhurst et al.,324

1995; Field et al., 1998; Bar-On et al., 2018). By removing CO2 from surrounding325

waters, PP lowers the ambient CO2 concentration in surface waters. This can326

potentially lead to a drawdown of CO2 from the atmosphere. In doing so, PP can327

influence climate. The magnitude of any climate effect of PP depends, however,328

on the fate of the phytoplankton produced through PP. Only when the reduction329

in surface ocean pCO2 is maintained over time can it lead to a lasting drawdown330

of CO2. In practice, PP can only have a long-term impact on climate when its331

products are removed from surface waters through the ocean’s organic carbon332

“pumps” (Volk and Hoffert, 1985; Boyd et al., 2019). The “biological pump”,333

whereby organic material is transported to below the permanent thermocline is334
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largely driven by “new” production (Dugdale and Goering, 1967), i.e., PP driven335

by allochthonous nutrient input (which is sensitive to stoichiometry and nutrient336

availability). To quantify the effect of ocean PP in global carbon cycling and,337

thereby, climate development, there is therefore a need to develop mechanisms to338

differentiate between total and new PP in the ocean (Brewin et al., 2021).339

3.1.1. State of the art in primary production340

Satellite algorithms of primary production have a long-established history,341

dating back over 40-years, to the time when the first ocean-colour satellite (the342

Coastal Zone Color Scanner) became available (Smith et al., 1982; Platt and343

Herman, 1983). Some initial attempts were made to convert fields of chlorophyll-344

a directly into primary production (Smith et al., 1982; Brown et al., 1985; Eppley345

et al., 1985; Lohrenz et al., 1988), before approaches based on first principles were346

established, utilising in addition to information on chlorophyll-a concentration,347

information on bulk and spectral light availability (now available through satellite348

Photosynthetically Available Radiation (PAR) products), and on the response349

of the phytoplankton to the available light (parameters of the photosynthesis-350

irradiance curve) (e.g., Platt et al., 1980; Platt and Herman, 1983; Platt et al.,351

1990; Platt and Sathyendranath, 1988; Sathyendranath and Platt, 1989). The352

first global estimates were computed in the mid-1990’s (Longhurst et al., 1995;353

Antoine et al., 1996; Behrenfeld and Falkowski, 1997a), arriving at values of354

around 50 Gt C y−1, consistent with current estimates (Carr et al., 2006; Buitenhuis355

et al., 2013; Kulk et al., 2020, 2021). Whereas many of the modern techniques356

can differ in implementation, they have been shown to conform to the same basic357

formulation, with the same set of parameters (Sathyendranath and Platt, 2007),358

with some going beyond total primary production, and partitioning it into different359

phytoplankton size-classes (e.g., Uitz et al., 2010, 2012; Brewin et al., 2017b).360

For a review of these approaches, the reader is referred to the classical works361

of Platt and Sathyendranath (1993), that of Behrenfeld and Falkowski (1997b),362

Sathyendranath and Platt (2007), Sathyendranath et al. (2020) and Section 4.2.1.363

of Brewin et al. (2021). For a review of operational satellite radiation products364

for ocean biology and biogeochemistry and a roadmap for improving existing365
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products and developing new products, see Frouin et al. (2018). The reader is366

also referred to the huge efforts made by NASA over the past 20 years to evaluate367

and improve these satellite algorithms (Campbell et al., 2002; Carr et al., 2006;368

Friedrichs et al., 2009; Saba et al., 2010, 2011; Lee et al., 2015), which have369

highlighted variations in model performance with region and season (root mean370

square deviations of between 0.2 to 0.5 in log10 space, when compared with in-situ371

data), illustrated the importance of minimising the uncertainties in model inputs372

and parameters, and in knowing the uncertainties in the in-situ measurements373

used for validation.374

Following presentations and discussions on primary production at the work-375

shop, five key priorities were identified. These are summarised in Table 2 and376

include: 1) parametrisation of satellite algorithms using in-situ data; 2) uncer-377

tainty estimation of satellite algorithms and validation; 3) linking surface satellite378

measurements to the vertical distribution; 4) trends; and 5) understanding.379

3.1.2. PP priority 1: Parametrisation of satellite algorithms using in-situ data380

Challenges: Considering that most satellite primary production models con-381

form to the same principles (Sathyendranath and Platt, 2007), a major challenge382

to the research community is to improve our understanding of the spatial and383

temporal variability in the model parameters. This will be key to improving accu-384

racy of satellite primary production models (Platt et al., 1992). Although large385

efforts have been made in recent years to compile global in-situ datasets of the386

parameters of the photosynthesis-irradiance curve (e.g., Richardson et al., 2016;387

Bouman et al., 2018), relatively few measurements of photosynthesis-irradiance388

curve parameters exists globally, with many regions (e.g., Indian Ocean, Southern389

Ocean and central Pacific) being under-represented (Kulk et al., 2020). The390

continuation of existing sampling campaigns and expansion to under-represented391

regions, is subject to financial support for in-situ observations, particularly ship-392

based research cruises, considering that many primary production measurements393

require specialised equipment, not suitable for automation. Given the declining394

fleet of research vessels in many regions (e.g., Kintisch, 2013), new solutions are395

needed, with sustained funding.396
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Another challenge is that in-situ data on primary production and model pa-397

rameters are often collected in a non-standardised way, with differing conversion398

factors and protocols, and differing ancillary measurements, with limited infor-399

mation on the light environment, for both the experimental set-ups as well as400

the in-situ data (Platt et al., 2017). There are many ways primary production401

can be measured (see Sathyendranath et al., 2019b; Church et al., 2019; IOCCG402

Protocol Series, 2021a), and to convert between methods is not straight-forward,403

though some studies have shown promise in this regard (e.g., Regaudie-de Gioux404

et al., 2014; Kovač et al., 2016, 2017; Mattei and Scardi, 2021). There is a clear405

challenge to develop better protocols and standards for primary production data406

collection. Recent efforts by the IOCCG have made some progress (IOCCG407

Protocol Series, 2021a).408

A further challenge with developing and validating satellite algorithms stems409

from the fact that primary production (a time varying rate) is estimated from an410

instant satellite snapshot in time. The time variability of PAR, biomass and the411

possible variability in photosynthetic parameters must be modelled. Meanwhile412

these all have diurnal variability.413

Gaps: Challenges to in-situ data collection (e.g. lack of adequate funding)414

and compilation have meant there are very few stations with continuous in-situ415

measurements of primary production and related parameters. As the ocean colour416

time-series approaches a length needed for climate change studies (∼40 years;417

Henson et al., 2010; Sathyendranath et al., 2019a), this will impede our ability to418

verify climate trends in primary production detected from space (see PP priority419

5). There are gaps in coordination at the international level that if filled, would420

greatly benefit the systematic and sustained collection of in-situ measurements on421

primary production. Many remote sensing algorithms of PP rely on a knowledge422

of photosynthesis-irradiance curve parameters. Consequently, the algorithms423

are only as accurate as the coverage (both spatial and temporal) of these in-424

situ parameters. They are also likely to be sensitive to climate change, so it is425

important to keep updating the in-situ databases.426

Opportunities: By capitalising on an expanding network of novel and au-427
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tonomous in-situ platforms, there are opportunities to improve the quantity of428

measurements of primary production, by harnessing active fluorescence-based429

methods (IOCCG Protocol Series, 2021a), such as Fast Repetition Rate (FRR)430

fluorometry (Kolber and Falkowski, 1993; Kolber et al., 1998; Gorbunov et al.,431

2000) and Fluorescence Induction and Relaxation (FIRe) techniques (Gorbunov432

et al., 2020). In fact, variable fluorescence techniques are increasingly being used433

to assess phytoplankton photosynthesis (see Gorbunov and Falkowski, 2020).434

There are challenges in interpreting these data (Gorbunov and Falkowski, 2020),435

and differences between FRR and 14C PP can be large (Corno et al., 2006). How-436

ever, as these are optical measurements that can be collected in real time, they437

are well suited to autonomous platforms (Carvalho et al., 2020). For a recent438

review on the topic see Schuback et al. (2021). Dissolved oxygen measurements,439

derived from oxygen optode sensors on autonomous platforms, can be used to440

estimate and quantify photosynthesis and respiration rates, as well as to quantify441

gross oxygen production that can be used to constrain net primary production442

estimates (Barone et al., 2019; Johnson and Bif, 2021). Such estimates require443

high temporal resolution sampling, to observe the entire daily cycle (both night444

and day).445

A multi-platform approach to combining discrete in-situ measurements, with446

those from autonomous in-situ platforms and satellite data, could offer synergistic447

benefits, providing the different scales of the observations, and differences in448

measurement techniques can be bridged. There are also opportunities to encourage449

and support existing time-series stations (e.g., BATS, HOT, WCO-L4, CARIACO,450

Line P, Porcupine Abyssal Plain, Blanes Bay Microbial Observatory, LTER sites,451

and Stončica) to continue to make high-quality in-situ measurements of primary452

production as well as the model parameters necessary for implementation of453

primary production and photoacclimation models. There are opportunities to use454

artificial intelligence, such as machine learning, to help in this regard (e.g., see455

Huang et al., 2021).456

There are opportunities to exploit the ability of geostationary platforms (e.g.457

GOCI), to resolve diurnal variability in light (PAR) and biomass. Such sensors458
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are also able gather considerably more data for a given region than polar orbiting459

satellites (Feng et al., 2017). By building on the international community engage-460

ment of the "Ocean Carbon from Space" workshop, and that of other international461

initiatives (e.g., IOCCG), there are opportunities to formulate priorities for fund-462

ing, and to create the necessary coordinating bodies, to address the challenges463

and gaps identified above.464

3.1.3. PP priority 2: Uncertainty estimation of satellite algorithms and validation465

Challenges: Assessment of satellite-based primary production estimates is466

currently challenging, owing to the sparsity of in-situ data on primary production467

and model parameters (limited in spatial and temporal coverage and by costs),468

differences in the methods used for in-situ data collection, differences in scales469

of in situ and satellite observations, and a lack of availability of independent470

in-situ data to those used for model tuning. Standard oceanographic cruises can471

be affected by extreme weather conditions, particularly during fall and winter472

seasons. As a result, ship-based observations are sparse and often biased towards473

the summer-season.474

Gaps: Validation-based uncertainty estimates of satellite-derived primary475

production products are often not readily provided, and it is difficult to quantify476

model-based error propagation methods (e.g., Brewin et al., 2017c). There are477

gaps in our understanding of the uncertainty in key parameters and variables used478

for input to primary production models. Other gaps exist relating to the nature479

of passive ocean-colour, such as data gaps in satellite observations (e.g., cloud480

covered pixels, and coverage in polar regions; Stock et al., 2020).481

Opportunities: We are now at a point where the computational demand of482

formal error propagation methods (going from errors in top-of-atmosphere re-483

flectance through to errors in primary production model parameters) can be met,484

such that per-pixel uncertainty estimates in satellite primary production products485

could be computed (McKinna et al., 2019). There are also opportunities to con-486

strain primary production estimates and reduce uncertainties through harnessing487

emerging hyperspectral, lidar and geostationary sensors, that may provide more488

information on the community composition of the phytoplankton and their diel489
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cycles (day-night cycles, a requirement being increased temporal resolution), as490

well as information on the spectral attenuation of underwater light, crucial for491

deriving PP. The synergistic usage of multiple satellites can be an opportunity to492

improve input irradiance products to PP models. There are also opportunities to493

use satellite sensors measuring light in the UV to improve satellite PP estimates494

(Cullen et al., 2012; Oelker et al., 2022). For improved uncertainty estimation,495

continuous validation is crucial, as is quantifying uncertainties in model parame-496

ters. Autonomous platforms and active ocean colour remote sensing (lidar) may497

offer opportunities to help in this regard.498

3.1.4. PP priority 3: Linking surface satellite measurements to the vertical499

distribution500

Challenges: Considering passive ocean-colour satellites only view a portion501

of the euphotic zone (the first penetration depth), resolving the vertical structure502

of all satellite-based carbon pools and fluxes is challenging, but none more so than503

that of primary production. There are challenges in the requirements to know verti-504

cal variations in the phytoplankton biomass (e.g., Chlorophyll-a, hereafter denoted505

Chl-a), the physiological status (e.g., photoacclimation) of the phytoplankton506

(e.g., through the parameters of the photosynthesis-irradiance curve), and the507

magnitude, angular structure and spectral nature of the underwater light field.508

For example, due to wind-depending wave-induced light focussing, there can509

be extreme short-term variability in PAR near the surface, with irradiance peaks510

> 15 times the average (Hieronymi and Macke, 2012) in visible, ultraviolent-A511

and -B spectral ranges, with implications for phytoplankton photosynthesis.512

Gaps: Our understanding of this vertical variability is impeded by the sparsity513

of in-situ observations on vertical structure. Ideally, we require observations at the514

equivalent spatial and temporal scale to that of the satellite data, for successfully515

extrapolating the surface fields to depth. There are also gaps in vertical physical516

data, and in their uncertainties, at equivalent scales to the satellite observations,517

such as the mixed-layer depth.518

Opportunities: There are future opportunities to improve our basic under-519

standing of vertical structure by tapping into existing and planned arrays of520
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autonomous in-situ platforms, such as the global array of Biogeochemical (BGC)521

- Argo floats (Johnson et al., 2009; Claustre et al., 2020; Cornec et al., 2021) and522

also the physical Argo array for fields of mixed-layer depth, with the help of sta-523

tistical modelling (e.g., Foster et al., 2021). Other technologies are also expected524

to improve understanding of vertical structure, such as moorings and ice tethered525

and towed undulating platforms (Laney et al., 2014; Bracher et al., 2020; Stedmon526

et al., 2021; Von Appen et al., 2021). These platforms may help us improve our527

understanding of the vertical distribution of parameters and variables relevant for528

PP modelling, such as chlorophyll (acknowledging potential vertical changes in529

fluorescence quantum yield efficiency), backscattering and light. Future satellite530

lidar systems will be capable of viewing the ocean surface up to three optical531

depths, improving the vertical resolution of ocean colour products.532

3.1.5. PP priority 4: Trends533

Challenges: Detecting trends in primary production is a major challenge534

to our research community. A recent report by the Intergovernmental Panel on535

Climate Change (IPCC, 2019) expressed low confidence in satellite-based trends536

in marine primary production.537

Gaps: The reasons the IPCC report cited this low confidence were related538

to the fact that the length of satellite ocean colour record is not sufficient yet539

for climate change studies, and the lack of corroborating trends in in-situ data540

(see primary production priority 1) (IPCC, 2019). Additionally, there are gaps in541

uncertainty estimates for satellite-based products (see primary production priority542

3), needed to quantity the significance of any such trends.543

Opportunities: To meet these challenges, and fill these gaps, there has been544

significant work over the past decade to create consistent and continuous satellite545

records for climate research (e.g., Sathyendranath et al., 2019a). As we approach546

the point at which the length of satellite ocean colour record will be sufficient547

for climate change studies, we can build on this work and harness these systems548

that have been put in place (e.g., Yang et al., 2022a). There are also opportunities549

to bring satellite data and models together, for example, using data assimilation,550

to improve our confidence and understanding of primary production trends (e.g.,551
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Gregg and Rousseaux, 2019) and understand variability in primary production and552

photoacclimation. There are also opportunities to gain insight into the impacts553

of climate change on primary production, by studying short-term extreme events554

(see Section 3.7 and Le Grix et al., 2021).555

3.1.6. PP priority 5: Understanding556

Challenges: At the workshop, participants also identified some major chal-557

lenges relating to our fundamental understanding of marine primary production.558

These included: the need to understand better the relationships between primary559

production, phytoplankton community structure and physical-chemical environ-560

ment (e.g. nutrient availability); understand better feedbacks between physics561

and biology and how biology affects the carbon cycle; understand better the fate562

of primary production (e.g., secondary and export production); and understand563

better the interactions between different components of the Earth System and how564

they influence marine primary productivity. As stated earlier, for carbon cycle565

studies, there is a clear requirement to go beyond PP and strive to quantify new566

production and net community production (e.g., Tilstone et al., 2015; Ford et al.,567

2021, 2022a,b).568

Gaps: There are gaps in in-situ observations that if filled could help meet569

some of these challenges (see primary production priority 1). Additionally, meet-570

ing some of these challenges may require higher spatial and temporal resolution571

products than currently available, for example, to study diurnal variability. The572

need for higher spatial and temporal resolution data also limits our ability to573

estimate primary production in coastal and inland waters, impeding our under-574

standing of land-sea interactions (Regnier et al., 2021) (see Section 3.6 for links575

to Blue Carbon).576

There are also gaps in satellite information on datasets relevant to photo-577

chemical reactions, mostly activated by UV light, impacting primary production578

through photodegradation of phytoplankton and the formation of UV absorbing579

compounds. High spectral resolution data from satellite is also needed to improve580

primary production modelling (Antoine and Morel, 1996). Should such datasets581

become available, they will require validation. Equipping autonomous platforms582
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with hyperspectral sensors could provide help in this regard (see priority 3).583

Opportunities: With greater emphasis placed on an Earth system approach, to584

meet the challenges of the UN Ocean Decade, there are now more opportunities for585

collaborative interdisciplinary research, which may help to unify the integration586

of primary production across interfaces, bringing together primary production587

on land and in the ocean. With increasing computation power, there are also588

opportunities to merge/nest regionally-tuned models for larger scale estimates of589

primary production.590

There are opportunities to harness novel algorithms and satellites (e.g. S5P, S5,591

S4, PACE) that can provide enhanced information on the spectral composition of592

underwater light field (e.g., for the retrieval of diffuse underwater attenuation (Kd)593

of UV and short blue light for TROPOMI (S5P) see Oelker et al., 2022). There is594

also scope to go beyond the one waveband (490 nm) Kd products, as currently595

provided operationally, to multi and hyperspectral Kd products, building on the596

capabilities of S3-OLCI next generation missions and older generation satellites597

like MERIS, that have a suit of bands in the visible range. Especially considering598

improved data storage and transfer capabilities. There are also opportunities to599

use satellite instruments covering the UV spectral range to give insight on the600

presence of UV absorbing pigments and types of CDOM, which may provide601

important information on photodegradation processes. Active-based lidar systems,602

capable of viewing further into the water column, at day and night and at low sun603

angles, and geostationary platforms, may offer opportunities to fill gaps in our604

understanding of primary production.605

3.2. Particulate Organic Carbon (POC)606

Particulate Organic Carbon (POC) can be defined functionally as the organic607

carbon in a water sample that is above 0.2 µm in diameter (taken as the formal608

boundary between dissolved and particulate substances). Globally, it is thought609

to be in the region of 2.3-4.0 Gt C in size (Stramska, 2009; CEOS, 2014; Galí610

et al., 2022), with around 0.58-1.3 Gt C in the upper mixed layer (Evers-King611

et al., 2017; Galí et al., 2022). It is among the most dynamic pools of carbon in612

the ocean, and turns over at a higher rate than any organic carbon pool on Earth613
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(Sarmiento and Gruber, 2006). It can be separated into living (e.g., phytoplankton,614

zooplankton, bacteria) and non-living (e.g., detritus) organic carbon material.615

3.2.1. State of the art in POC616

Satellite remote-sensing of POC focuses typically on the use of ocean colour617

data, and is among the more mature satellite ocean carbon products, with the618

first satellite-based algorithm developed in the late 90’s (Stramski et al., 1999).619

Current algorithms include those that are: based on empirical band ratio or band-620

differences in remote-sensing reflectance wavelengths; backscattering based;621

backscattering and chlorophyll based; based on estimates of diffuse attenuation622

(Kd); and based on a two-step relationship between diffuse attenuation and beam623

attenuation. It is worth acknowledging the IOP-, chlorophyll-, and Kd-based624

algorithms involve first deriving these inputs from remote-sensing reflectances.625

For a recent review of these algorithms the reader is referred to Section 4.1.3.1. of626

Brewin et al. (2021). The empirical algorithm that links POC in the near-surface627

ocean to the blue-to-green reflectance band ratio described in Stramski et al.628

(2008) has been used by NASA to generate the standard global POC product from629

multiple satellite ocean color missions, and in some ESA POC initiatives (Evers-630

King et al., 2017). These standard algorithms provided a tool for estimation of631

global and basin-scale reservoirs of POC in the upper ocean layer (e.g., Stramska632

and Cieszyńska, 2015). Recently, a new suite of ocean color sensor-specific633

empirical algorithms intended for global applications was proposed by Stramski634

et al. (2022) with a main goal to improve POC estimates compared to current635

standard algorithms in waters with very low POC (ultraoligotrophic environments)636

and relatively high POC (above a few hundred mg m−3). Intercomparison and637

validation exercises have suggested the performance of satellite POC algorithms638

is comparable to, or even better than, satellite estimates of chlorophyll-a (Evers-639

King et al., 2017), among the more widely used ocean colour products. This is640

perhaps related to POC representing the entire pool of organic particles (rather641

than just phytoplankton, as with Chl-a). However, a recent study highlighted642

significant inconsistencies between satellite-retrieved POC and that estimated643

from BGC-Argo float data at high-latitudes during the winter season (Galí et al.,644
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2022).645

The POC session saw the presentation of novel algorithms for POC estima-646

tion, including a refined empirical approach to the use of blue and green bands of647

reflectance for global POC estimation, the algorithms based on optical classes,648

theoretical optical algorithms based on the backscattering signal, multi-variate649

empirical algorithms and those that employ machine learning methods. Intercom-650

parisons of existing algorithms were presented, as well as plans to generate long651

time series of POC products, combining multiple satellite sensors. Plans for POC652

algorithms for future satellite sensors were also presented. Six priority areas of653

POC were identified, that will be discussed separately in this section, including:654

1) in-situ measurement methodology; 2) in-situ data compilation; 3) satellite655

algorithm retrievals; 4) partitioning into components; 5) vertical profiles; and 6)656

biogeochemical processes and the biological carbon pump. Table 3 summarises657

these priorities, and their challenges, gaps and opportunities.658

3.2.2. POC priority 1: In-situ measurement methodology659

Challenges: The current filtration-based methodology that uses glass-fiber660

filters (nominal porosity typically around 0.7 µm, though the effective pore size661

of glass-fiber filters is though to be substantially smaller; Sheldon, 1972) for662

retaining particles and measuring POC does not include all POC-bearing particles,663

and hence does not determine the total POC. In particular, some fraction of664

submicrometer POC-bearing particles is missed by this method (e.g., Nagata,665

1986; Taguchi and Laws, 1988; Stramski, 1990; Lee et al., 1995), and these666

small-sized particles can make significant contribution to total POC (e.g., Sharp,667

1973; Fuhrman et al., 1989; Cho and Azam, 1990). Glass-fiber filters are also668

subject to cell leakage and can cause breakage of cells due to the combined669

effects of pressure sample loading, and needle-like microfiber ends (IOCCG670

Protocol Series, 2021b). Other sources of possible underestimation of total POC671

include the loss of POC due to the impact of pressure differential across the672

filters (but see Liu et al., 2005) and an underrepresentation of the contribution673

of relatively rare large particles associated with a limited filtration volume (e.g.,674

Goldman and Dennett, 1985; Bishop, 1999; Gardner et al., 2003; Collos et al.,675
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2014). Thus it is very important to report volumes filtered together with POC676

concentrations. Differences in filter type, particle settling in bottles, and breakage677

or leakage of phytoplankton and other cells, are other issues that can cause errors678

in filtration-based methods.679

Optical remote sensing (including ocean colour measurements from space) is680

driven by all particles suspended in water, including particles which are missed681

and/or underrepresented by the current filtration-based POC methodology. Thus,682

there is a mismatch between in-situ POC measurements through filtration and683

optical measurements that serve as a proxy of POC. The missing portion of POC684

unaccounted for by the current filtration-based POC methodology is important685

to both the ocean biogeochemistry and ocean optics that underlies ocean colour686

measurements from space.687

While standardisation of POC methodology is generally desirable, there688

are important interpretive challenges that must be recognized in the course of689

the standardisation process. In particular, while the recommendation to use690

DOC-absorption correction to the standard filtration-based method will result in691

correction for one known source of overestimation of the fraction of total POC692

that is strictly retainable on the filters (Moran et al., 1999; Gardner et al., 2003;693

Cetinić et al., 2012; Novak et al., 2018; IOCCG Protocol Series, 2021b), the issue694

of known sources of underestimation of total POC remains unresolved.695

The fractional contributions to POC associated with differently-sized particles696

and/or different types of particles (e.g., different groups or species of microorgan-697

isms) are difficult to quantify and remain poorly known for natural polydisperse698

and heterogenous assemblages of suspended particles.699

Gaps: The current POC standard method does not account for both the artifi-700

cial gains and losses of POC during collection of particles by filtration (Gardner701

et al., 2003; Turnewitsch et al., 2007; IOCCG Protocol Series, 2021b). With the702

exception of size-based filtration (which has know limitations), no experimental703

capabilities exist to partition total POC of natural particulate assemblages into704

contributions by different size fractions and/or different types of particles which705

play different roles in ocean biogeochemistry and carbon cycling. Another im-706
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portant gap is the lack of a certified reference material (CRM) for POC. A CRM707

allows to estimate the accuracy of POC estimated by different laboratories and by708

the same laboratory in different times and locations. As a consequence, a CRM709

for POC, if used by the community, would allow to reduce uncertainties in POC.710

Opportunities: There are opportunities to advance and standardise the mea-711

surement methodology of total POC to provide improved estimates. These712

advancements can be brought about by including the portion of POC that is713

unaccounted for by the current standard filtration-based method. This would714

likely involve developing measurement capabilities aiming at quantification of715

POC contributions associated with differently-sized particles and different particle716

types based on combination of single-particle measurement techniques for particle717

sizing, particle identification, and particle optical properties.718

3.2.3. POC priority 2: In-situ data compilation719

Challenges: POC algorithm development and validation depends on datasets720

used in these analyses. For the purposes of algorithm development or validation,721

the field-based datasets are commonly compiled from data collected by differ-722

ent investigators on many oceanographic expeditions covering a long period of723

time. The information content available in documentation of various individual724

datasets is non-uniform and does not always contain sufficient details about data725

acquisition and processing methodology. This creates a risk that the compiled726

datasets are affected by methodological inconsistencies across diverse subsets727

of data, including the potential presence of methodological bias in some data.728

The presence of methodological bias is generally difficult to identify given the729

range of environmental variability, especially when available details on data ac-730

quisition methods are limited and/or there is a lack of replicate measurements (a731

CRM would help in this regard, see POC priority 1). Thus, indiscriminate use732

of data for the algorithm development and validation analyses is not advisable.733

These issues pose significant challenges for assembling high-quality field datasets734

that meet the standards and objectives of algorithm development or validation735

analyses including, for example, the process of data quality control based on736

predefined set of inclusion and exclusion criteria and assurance of environmental737
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representativeness of datasets assembled for the analysis of specific algorithms738

(e.g., global vs. regional; Stramski et al., 2022).739

The common validation strategy that relies on comparisons of field-satellite740

data matchups is not by itself sufficient to ensure rigorous assessment and under-741

standing of various sources of uncertainties in satellite-derived POC products.742

The deviations between field and satellite data matchups can occur for various743

reasons such as spatio-temporal mismatch of data, uncertainties in both satellite744

and in-situ measurements, atmospheric correction, and performance skills of the745

in-water algorithm itself. In addition, the number of available data matchups is746

often limited in various environments.747

Gaps: While the documentation of data acquisition and processing methods748

is often limited, especially in historical datasets, there are no standardised best-749

practice guidelines to ensure consistency in data quality control and synthesis750

efforts when larger datasets are compiled from various individual subsets of751

data. There are also regions within the world’s oceans, such as polar regions and752

the Indian Ocean, where concurrently collected field data of POC and optical753

properties are scarce, including the lack of temporal coverage over the entire754

seasonal cycle.755

Opportunities: Further efforts related to POC algorithm development and756

validation can benefit from careful scrutiny of historical and future data to min-757

imize the risk of using biased data and ensure that the analyses are conducted758

using data with consistently high quality and are accompanied with sufficiently759

detailed documentation on data acquisition and processing methods. These ef-760

forts can be facilitated through further improvements and standardisation of best761

practices for documentation, quality control, sharing, and submission of data into762

database archives. Such practices are expected to lead to better data quality, data763

interpretation, and uncertainty assessments (IOCCG Protocol Series, 2021b).764

There is a need to continue field programs in which concurrent POC and765

optical data are acquired across diverse environments including those that have766

been severely undersampled in the past.767
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3.2.4. POC priority 3: Satellite algorithm retrievals768

Challenges: There can be a high level of complexity and variability of water769

optical properties and water constituent composition including POC-bearing770

particles, especially in coastal regions and inland waters (where non-algal particles771

are more prevalent), which are highly susceptible to land effects and re-suspension772

of sediments from shallow bottom. This makes it very difficult to develop a unified773

approach to provide reliable POC retrievals from optical remote sensing along774

the continuum of diverse optical/biogeochemical environments from open ocean775

to coastal and inland water bodies.776

Standard global POC products are generated indiscriminately with respect to777

optical water types or the optical composition of water. Hence, this product is778

generated for a wide range of environmental situations, including the conditions779

outside the intended scope of global algorithms, which implies unknown and po-780

tentially large uncertainties. An inter-mission consistency of POC satellite-based781

products is required to support long-term climate data records. To successfully782

harness new satellite sensors geostationary and hyperspectral satellite data (e.g.,783

GLIMR, PRISMA, PACE), there are challenges associated with appropriate784

atmospheric correction schemes, that can deal with large solar zenith and view-785

ing angles for geostationary sensors, and spectral consistency for hyperspectral786

sensors.787

Gaps: The current routine process of generating standard global POC products788

from global empirical algorithms either lack the mechanistically-based flags789

associated with ocean properties or optical water types to prevent the application790

of algorithms beyond their intended use, or where flags do exist, their usage791

is often not clarified and they are often not accurate. Clear and accurate flags792

are needed to minimize the risk of generating a product with unknown or large793

uncertainty (e.g., optically complex waters with mineral-dominated particulate794

assemblages). The need for appropriate flags to prevent the use of algorithms795

outside their scope is broadly relevant, for example, it applies also to regional796

algorithms (McKinna et al., 2019).797

There is a lack of advanced algorithms based on adaptive approaches that in-798
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corporate mechanistic principles on the interaction of light with water constituents799

and associated optical water typologies, but the workshop saw the emergence800

of such methods, which is a promising sign. For example, algorithms that dis-801

criminate the water bodies based on varying composition of organic and mineral802

particles are required to enable reliable POC retrievals across diverse environ-803

ments including the optically-complex coastal water bodies (Loisel et al., 2007;804

Woźniak et al., 2010; Reynolds et al., 2016).805

Opportunities: Recent development of a new suite of empirical satellite806

sensor-specific global POC algorithms provide the opportunity for further testing,807

validation, analysis of inter-mission consistency, and ultimately an implementation808

of next-generation algorithms for routine production of a refined global POC809

product (Stramski et al., 2022).810

Development of new algorithmic approaches with enhancements offered811

by potential incorporation of mechanistic principles underlying interactions of812

light with water constituents will support and advance future remote sensing813

applications along the continuum of diverse aquatic environments.814

The analysis of POC reservoir and its spatio-temporal dynamics is expected to815

be enhanced by increased availability and use of geostationary and hyperspectral816

satellite data (e.g., GLIMR, PRISMA, PACE) along with in-situ data.817

3.2.5. POC priority 4: Partitioning into components818

Challenges: The particle size distribution (PSD) is an important link between819

ecosystem structure and function on the one hand, and optical properties on the820

other, as it affects both. Phytoplankton cell size is a key trait, and size fractions821

are closely related to functional types (Le Quéré et al., 2005; Marañón, 2015).822

One of the most challenging, yet important tasks moving forward is to develop823

understanding of the different functional and/or size partitions of POC. Bulk POC824

does not give a full picture of the ecosystem or its role in biogeochemical cycles.825

In addition, empirical POC satellite algorithms assume certain relationships826

between POC and optical properties. These relationships can change if basic827

characteristics of the POC change, such as its particle size distribution (PSD)828

or the fraction of total POC due to living phytoplankton. For example, the829
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POC-specific backscattering coefficient can change if the PSD of POC changes,830

and the POC-specific absorption spectra can change if the living carbon:POC831

ratio changes (e.g., Stramski et al., 1999; Loisel et al., 2001; Balch et al., 2010;832

Woźniak et al., 2010; Cetinić et al., 2012; Reynolds et al., 2016; Kostadinov et al.,833

2016; Johnson et al., 2017; Koestner et al., 2021; Kostadinov et al., 2022).834

Notwithstanding the operational limitations of what constitutes POC and dis-835

solved substances within the submicrometer size range, the particle assemblages836

in the near surface ocean are exceedingly complex, which makes this challenge837

particularly difficult to address. In addition, both forward and inverse modelling838

of the optical properties of the ocean entirely from first principles are not feasible839

currently. The range from truly dissolved substances to particles such as large840

zooplankton and beyond span many orders of magnitude in size and are governed841

by different optical regimes, which makes it difficult, for example, to identify,842

quantify, and separate the various sources of optical backscattering in the ocean843

(Stramski et al., 2004; Clavano et al., 2007; Stemmann and Boss, 2012).844

In terms of functional fractions, POC can be considered to consist of phy-845

toplankton, heterotrophic bacteria, zooplankton, and organic detritus. In terms846

of size fractions, ideally the PSD of POC and its various functional components847

should be measured in situ. There are theoretical considerations indicating that848

the marine bulk PSD, spanning several orders of magnitude in size, can follow, to849

first approximation, a power-law with a certain slope ((e.g., Kerr, 1974; Kiefer and850

Berwald, 1992; Jackson, 1995; Rinaldo et al., 2002; Brown et al., 2004; Hatton851

et al., 2021). The power-law approximation of marine PSD was used in numerous852

studies involving experimental data of PSD (e.g., Bader, 1970; Sheldon et al.,853

1972; Jackson et al., 1997; Jonasz and Fournier, 2007; Buonassissi and Dierssen,854

2010; Clements et al., 2022) and satellite-based estimation of PSD (Kostadinov855

et al., 2009, 2010, 2016, 2022). However, there is a challenge associated with the856

use of power-law approximation because marine PSDs commonly exhibit some857

features across different size ranges, such as distinct peaks, shoulders, valleys,858

and changes in slope, which can result in significant deviations of PSD from a859

single-slope power function. Such deviations were demonstrated in many mea-860
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surements of PSD in different oceanic environments (e.g., Jonasz, 1983; Risović,861

1993; Bernard et al., 2007; Reynolds et al., 2010; White et al., 2015; Organelli862

et al., 2020; Reynolds and Stramski, 2021).863

Finally, optically complex coastal waters present an additional challenge in864

that allochthonous and autochthonous sources of POC may be mixed, for example,865

due to riverine input, making the task of separating POC by functional fractions866

with known or assumed optical properties or PSD more challenging.867

Gaps: There is a dearth of concurrent data on POC, PSD and carbon data for868

the components that make up the POC (e.g., phytoplankton carbon). This is a869

major limiting factor for satellite algorithm development.870

Opportunities: There is an opportunity to exploit upcoming hyperspectral871

and polarization remote-sensing data. However, to do so requires efforts directed872

toward progress in basic research into how POC is partitioned into its various873

components. It is important to include measurements of PSD in future POC field874

campaigns globally, and in the compilation of global, quality-controlled datasets875

for algorithm development. Further studies of non-parametric descriptors of PSD876

are desirable because they offer superior performance compared with the power877

law approximation for representing the contributions of different size fractions878

to PSD across a wide diversity of marine environments (Reynolds and Stramski,879

2021). Satellite-based approaches to monitoring zooplankton (e.g. Strömberg880

et al., 2009; Basedow et al., 2019; Behrenfeld et al., 2019; Druon et al., 2019)881

could futher aid in partitioning out the contribution of zooplankton to POC.882

3.2.6. POC priority 5: Vertical profiles883

Challenges: Whereas vertical profiles of POC can be estimated from in-situ884

optical sensors (in particular, backscattering sensors and transmissometers) de-885

ployed on autonomous in-situ platforms, the performance of present optical-based886

POC algorithms is hampered by limited understanding and predictability of varia-887

tions in the characteristics of particulate assemblages and their relationships with888

optical properties throughout the water column. There is a strong requirement to889

promote fundamental research to better quantify and understand the relationships890

between variable vertical profiles of POC (and characteristics of the POC such891
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as PSD, functional and size fractions) and the optical signal detectable from892

satellites.893

Gaps: One of the most frequently asked questions posed by users of ocean894

colour remote sensing data (e.g., modellers) is what the satellite sensor actually895

“sees”, in particular how deep the satellite sensor probes the water column in896

terms of variable near-surface vertical profiles of retrieved data products such as897

POC. For passive ocean colour, due to the double trip light has to take through898

the water column between the ocean surface and a given depth (downwelling899

radiance and then upwelling radiance), the source of the water-leaving optical900

signal reaching the satellite is heavily weighted to the near-surface layers of901

the ocean. Early research from the 1970s demonstrated that 90 % of the water-902

leaving signal comes from one e-folding attenuation depth, i.e., the layer defined903

by 1/Kd, where Kd is the wavelength-dependent diffuse attenuation coefficient904

for downwelling irradiance (Gordon and McCluney, 1975). There is a need905

to expand on this research and develop POC-specific understanding, including906

the effects of vertical profiles of variables going beyond just bulk POC, namely907

POC partitioned by functional and/or size fractions (see POC priority 4). The908

diurnal evolution of the characteristics of POC vertical profiles also needs careful909

consideration. At present, there is an uneven distribution of vertical in-situ profiles910

of POC globally, with the southern hemisphere poorly covered compared with911

the northern hemisphere.912

Opportunities: There are opportunities to advance basic research into improv-913

ing our understanding of the relationships between POC and optical properties,914

such as the particulate backscattering coefficient, that are potentially amenable915

to measurements from autonomous in-situ platforms such as BGC-Argo floats.916

Artificial Intelligence may help in this regard (Claustre et al., 2020). Such research917

is expected to guide development of new sensors and algorithms (e.g., scattering918

sensors that include polarization) which will ultimately provide more reliable esti-919

mations of POC throughout the water column from autonomous systems. There920

are opportunities for synergy between satellite, models and autonomous platforms921

to create 3D and 4D fields of POC (Claustre et al., 2020). Future active-based922

31



satellite lidar systems will penetrate further into the water column improving923

vertical resolution of variables like the backscattering coefficient, a proxy for POC924

(Jamet et al., 2019).925

3.2.7. POC priority 6: Biogeochemical processes and the biological carbon926

pump927

Challenges: It is estimated that around 80 % of the carbon that is exported928

through the ocean biological carbon pump (BCP) is in the form of POC, and the929

remainder is transported downward as DOC via vertical mixing and advection930

(Passow and Carlson, 2012; Legendre et al., 2015; Boyd et al., 2019). The vertical931

export of POC results from several biological and physical processes, of which932

gravitational POC sinking is the largest component (Boyd et al., 2019). For a fixed933

fluid viscosity and density, gravitational sinking speed is a function of particle934

size, composition, and structure (Laurenceau-Cornec et al., 2020; Cael et al.,935

2021). The distribution of these properties in the particle population results to936

a large extent from the functioning of the upper-ocean ecosystem. Therefore,937

improving the satellite retrieval of POC mass (POC priority 3), size distribution938

(POC priority 4), and vertical distribution (POC priority 5), as well as additional939

particle properties (e.g., composition), is key to understanding and predicting the940

operation of the BCP at various scales.941

Quantifying the global vertical POC export flux is a major challenge, as the942

range of current estimates (ca. 5-15 Gt C yr−1; Boyd et al., 2019) remains similar to943

the ranges quoted in the 1980s (Martin et al., 1987; Henson et al., 2022). Improved944

ability to estimate the concentration and fluxes of POC (gravitational sinking,945

but also other pathways like the migrant pumps and physical pumps) would also946

benefit the study of trace element cycling (Conway et al., 2021) and deep-ocean947

ecosystems that rely on POC export. Current methods to measure gravitational948

POC export are work-intensive and do not allow for high spatio-temporal coverage,949

nor do they cover other pathyways of carbon export, such as the migrant and950

mixing pumps, that contribute to a large portion of carbon export (Boyd et al.,951

2019) and change the sequestration times of exported carbon. Moreover, they952

often rely on simplifying assumptions (steady-state vertical profiles, negligible953
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effects of horizontal advection, to name just a few) whose validity is not always954

tested or subjected to sensitivity analyses (Buesseler et al., 2020). Therefore,955

empirical (e.g., remote-sensing based) and prognostic models of gravitational956

POC export rely on in-situ measurements that are inherently uncertain and have957

sparse spatio-temporal coverage.958

Gaps: The relationship between upper-ocean biogeochemical properties and959

vertical POC fluxes is still very uncertain, which hampers their representation in960

empirical and mechanistic models of the BCP. Large-scale estimates of vertical961

POC export usually focus on the average (climatological) state of the ocean, but962

interannual variations and their drivers (e.g., the role of physical forcing) remain963

poorly known (Lomas et al., 2022), and because of data sparseness there is a risk964

of confounding spatial and temporal variability.965

Although shallow seas and continental slope areas are thought to play an966

important role in the global POC cycle, the sources and fate of POC in these967

areas remain difficult to monitor and quantify owing to the presence of optically968

complex environments, the higher abundance of inorganic particulate materials969

and the potentially larger role of lateral advection (Arístegui et al., 2020). Finally,970

processes other than gravitational sinking, such as the role of zooplankton diel971

vertical migration (DVM) (e.g., Bianchi et al., 2013a,b; Boyd et al., 2019). and972

the associated biogenic hydrodynamic transport (BHT) (e.g., Wilhelmus et al.,973

2019) need to be better understood and incorporated into ocean biogeochemical974

models.975

Opportunities: Sampling from autonomous platforms (BGC-Argo, gliders,976

moorings, etc.) can provide the spatial-temporal resolution needed to refine our977

understanding of the BCP, complementing more detailed shipborne observations978

and the synoptic surface view obtained from satellites. For example, "optical979

sediment traps” mounted on BGC-Argo floats (Bishop et al., 2004; Estapa et al.,980

2017) can record a nearly-continuous proxy of vertical POC fluxes in the ocean981

interior.982

Merging of these various data streams using statistical techniques (e.g., ma-983

chine learning Sauzéde et al., 2020) can allow for refined estimates of the BCP,984
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reducing the sampling bias associated with shipborne measurements. These com-985

plementary data streams can be further used to constrain mechanistic models986

of the BCP, for example, through data assimilation and parameter optimization987

(Nowicki et al., 2022). These approaches will improve quantification of the fluxes988

that form the BCP, help identify knowledge gaps and eventually spur progress989

in process-level understanding. Ongoing efforts are aimed at improving under-990

standing of the effects of DVM and BHT on the biological pump, through a991

synergy of remote-sensing (e.g., Behrenfeld et al., 2019), laboratory studies, and992

biogeochemical modelling.993

Although the framework drafted above is conceptually valid for the study of994

continental shelves, these areas require higher-resolution observations and models995

that can resolve their larger heterogeneity and a wider array of transport and996

transformation processes. Therefore, such areas would benefit from dedicated997

regional process studies and monitoring from geostationary satellites and other998

airborne sensors.999

3.3. Phytoplankton Carbon (C-phyto)1000

The living pool of POC can be partitioned into components associated with1001

living phytoplankton cells and other types of carbon (e.g., zooplankton, detritus,1002

fecal pellets). Phytoplankton carbon (C-phyto) is a particularly important pool of1003

POC owing to its role in marine primary production, and providing food to the1004

majority of the marine ecosystem. It has been estimated that the pool is around1005

0.78 – 1.0 Gt C in size (Falkowski et al., 1998; Le Quéré et al., 2005), but despite1006

its small size (relative to terrestrial plants, which is in the order to 450 Gt C, see1007

Bar-On et al., 2018) it contributes around 50 Gt C yr−1 in primary production1008

(equivalent to terrestrial plants, see Section 3.1).1009

C-phyto is key to establishing the carbon-to-chlorophyll ratio (important for1010

understanding phytoplankton physiology and thier adaptation to light, nutrient1011

and temperature changes), to compute primary production using carbon-based1012

models (Behrenfeld et al., 2005; Sathyendranath et al., 2009), and to assess the1013

contribution of photophysiology to the phytoplankton seasonal cycle (Bellacicco1014
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et al., 2016). High temporal C-phyto data allows for determination of carbon-1015

based growth and loss rates in phytoplankton (e.g., Sathyendranath et al., 2009;1016

Zhai et al., 2010; Behrenfeld and Boss, 2014). C-phyto has also been innovatively1017

used to assess, at the sea-air interface, the export of organic matter towards the1018

atmosphere in the form of aerosols (O’Dowd et al., 2004; Fossum et al., 2018).1019

3.3.1. State of the art in Phytoplankton Carbon1020

A number of algorithms have been developed to derive C-phyto from ocean1021

color observations (see Bellacicco et al. (2020) and reference therein, and Section1022

4.1.3.2. of Brewin et al. (2021)). The approaches used can be grouped broadly1023

into: i) backscattering-based (e.g., Behrenfeld et al., 2005; Martínez-Vicente et al.,1024

2013; Graff et al., 2015); ii) Chlorophyll-a-based (e.g. Sathyendranath et al., 2009)1025

some with use of models of photoacclimation and physiology parameters (e.g.,1026

Jackson et al., 2017; Sathyendranath et al., 2020); and iii) size-class-based (e.g.,1027

Kostadinov et al., 2016, 2022; Roy et al., 2017) approaches. These approaches1028

can also be ground according to their product (PSD, size class or taxonomic class)1029

or the optical properties used to derive them (Chla-abundance based, backscatter,1030

absorption, radiance) (Mouw et al., 2017). Each approach relies on the covariation1031

between optical properties or POC, and a proxy of phytoplankton concentration1032

such as Chl-a, phytoplankton light absorption or size distribution.1033

One of the biggest challenges in retrieving C-phyto from ocean color obser-1034

vations is separating the contributions of organic detritus, or non-algal particles1035

(NAP), and living phytoplankton cells to the optical properties, such as the par-1036

ticle backscattering, and to the particle size distributions, particularly in turbid1037

or coastal waters. It is assumed that phytoplankton (and co-varying material)1038

control the backscattering signal in the open ocean (Dall’Olmo et al., 2009; Or-1039

ganelli et al., 2018), an assumption used in Case-1 water models (e.g., Morel and1040

Maritorena, 2001). However, the variation of NAP horizontally, vertically, and1041

temporally is considerable in many parts of the ocean (Bellacicco et al., 2019,1042

2020) in size and concentration (Organelli et al., 2020). Recent efforts have been1043

made to improve C-phyto estimates from satellite-based particle backscattering1044

by accounting for variability in NAP (e.g., Bellacicco et al., 2020).1045
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Each of the proposed approaches have advantages and disadvantages, and1046

can be improved with knowledge on the optics-to-carbon conversion factors (that1047

can inform the Chl-a to C ratio), using in-situ C-phyto datasets (e.g., Martínez-1048

Vicente et al., 2017), and through reduced uncertainties in satellite-derived inputs1049

of relevant quantities (i.e., backscattering, Chl-a, and particle size distribution).1050

Currently, no method has extended the global estimation of C-phyto to below the1051

ocean surface where many biogeochemical interactions occur.1052

During the workshop, three key priority areas of C-phyto were identified, that1053

will be discussed separately in this section, and include: 1) in situ data; 2) satellite1054

algorithm retrievals; and 3) vertical structure. Table 4 summarises these priorities,1055

and their challenges, gaps and opportunities.1056

3.3.2. C-phyto priority 1: In-situ data1057

Challenges: Measuring C-phyto in-situ is notoriously difficult and no standard1058

method exists and any such measurements are likely to have high uncertainties.1059

A major challenge for communities working in this field is to improve in-situ1060

methodologies for quantifying C-phyto and to measure or estimate photoacclima-1061

tion model parameters. Standardization of phytoplankton carbon data submission1062

using emerging in-situ techniques (such as the Imaging FlowCytobot) is also1063

challenging (Neeley et al., 2021).1064

Gaps: As a direct result of this challenge, one of the largest gaps for deriving1065

C-phyto from space is the paucity of global in-situ C-phyto data (and C-phyto1066

community composition), to develop and validate models and algorithms. A1067

couple of methods exist to directly measure C-phyto. One of them entails the1068

separation of living phytoplankton particles from non-living (detrital) particles and1069

the subsequent elemental measurement of those particles (Graff et al., 2012, 2015).1070

Another, older method (Redalje and Laws, 1981), requires incubation experiments1071

in which the sample cells are labelled with 14C, and the specific activity of Chl-a1072

is measured at the end of the experiment as well as the total particulate 14C1073

activity. The direct measurement methodology of Graff et al. (2012, 2015) is1074

largely biased towards nano and pico-sized phytoplankton particles detected by1075

flow cytometry, whereas the method of Redalje and Laws (1981) depends on1076
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Chl-a being sufficiently high for the incubation experiments. It is important1077

that these direct methods are incorporated into existing programs. C-phyto may1078

also be indirectly measured by applying empirical relationships that relate cell1079

biovolume to C-phyto (Menden-Deuer and Lessard, 2000; Lomas et al., 2019).1080

These empirical relationships are largely attributed to micro-sized phytoplankton1081

(diatoms and dinoflagellates) and are limited to either a select number of laboratory1082

cultures or a specific region in the global ocean. Coincident in-situ observations1083

of both phytoplankton community composition, by flow cytometry, microscopy1084

or the more recent method of imaging-in-flow cytometry (e.g., Imaging Flow1085

Cytobot, FlowCAM) with bio-optical and radiometric measurements are critical1086

for establishing relationships between phytoplankton type, size, pigments and1087

optical signatures. Only limited number of field data sets (e.g., NASA’s EXPORTS1088

campaign, and the Atlantic Meridional Transect Programme (AMT)) contain these1089

coincident measurements, leading to a lack of understanding of their temporal1090

or spatial variability. Moreover, few measurements are taken below the surface1091

ocean (see C-phyto priority 3).1092

Additionally, there are very few consistent C-phyto surface time-series data1093

sets available. Time series data sets with clear uncertainties are critical to1094

understanding of spatio-temporal variability in C-phyto, community composi-1095

tion and coincident optical properties. Existing time-series studies that include1096

these measurements are limited (e.g., Martha’s Vineyard Coastal observatory,1097

https://nes-lter.whoi.edu/).1098

Opportunities: There is an opportunity to enlarge and explore data collected1099

at in-situ supersites. These are sites with co-located satellite data, were all the1100

different measurements needed to tune and validate satellite C-phyto algorithms1101

would be available (linking C-phyto to optical properties, and considering the1102

diversity and variation of phytoplankton and other optical constituents). A strategy1103

to achieve this could be to empower existing observatories, often also used for1104

applications such as water quality assessment, and expand the range of data1105

they collect to ensure all measurements needed for satellite C-phyto algorithms1106

are available (e.g., phytoplankton taxonomy, flow cytometry, FlowCAM). These1107
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supersite measurements could even be complemented by dedicated mesocosm1108

experiments that will help to improve the mechanistic understanding of the1109

relationship between C-phyto and optical properties. In addition, these data sets1110

can be used to derive reliable uncertainties in in-situ C-phyto data. A future1111

network of these supersites could be established to be representative of global1112

scales, and not only collect data at the surface but also throughout the euphotic1113

zone.1114

Another opportunity is to improve the global distribution of optical property1115

measurements used as input of C-phyto algorithms by empowering validation1116

through continuous underway optical measurements (e.g. Slade et al., 2010;1117

Brewin et al., 2016; Rasse et al., 2017; Burt et al., 2018) and autonomous mobile1118

platforms such as BGC-Argo profiling floats and Lagrangian drifters (e.g., Abbott1119

et al., 1990; Boss et al., 2008; Sauzède et al., 2016; Bisson et al.; Xing et al.,1120

2020). For the latter, these robotic platforms allow the acquisition of optical1121

data with limited spatial and temporal bias, as they also collect data in remote1122

regions, even during meteorological conditions that are unfavourable for ship-1123

based sampling (Organelli et al., 2017). Optical data from these platforms, or1124

similar technologies, have been used to derive bulk properties, such as diffuse1125

attenuation (Kd), Chl-a, coloured dissolved organic matter (CDOM) and POC,1126

and are a source of sub-surface data, complementary to the surface data from1127

satellites. As hyperspectral data can help resolve estimates on the composition1128

(type and size) of phytoplankton (Chase et al., 2013; Liu et al., 2019), integrating1129

instrumentation with hyperspectral capabilities (Jemai et al., 2021; Organelli et al.,1130

2021) can provide insight into phytoplankton composition in the illuminated1131

part of the water column (Bracher et al., 2020). Efforts to enlarge the optical1132

multi-platform data acquisition, and to develop protocols for the derivation of1133

high-quality C-phyto data sets, must be taken since these have the potential to1134

fill the gap of C-phyto information below the first optical depth and provide1135

information of phytoplankton photoacclimation (see C-phyto priority 3).1136

3.3.3. C-phyto priority 2: Satellite algorithm retrievals1137

Challenges: Backscattering is an optical property that has been linked to1138
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C-phyto. However, particle backscatter includes all particles, not just phytoplank-1139

ton and it is challenging to separate phytoplankton from non-living particles,1140

without complementary information such as microscopic or flow cytometric data.1141

Additionally, we should strive to increase the accuracy of backscattering retrievals1142

from space. Correcting the remote sensing reflectances for Raman scattering prior1143

to semi-analytical retrievals has shown some promise for improving quality of1144

back-scattering retrievals (Westberry et al., 2013; Lee et al., 2013; Pitarch et al.,1145

2019).1146

Chl-a, both satellite-derived and in-situ, is often used in models that relate1147

particle backscatter to C-phyto through empirical relationships. However, the1148

uncertainties within these empirical relationships are increased by the influence of1149

phytoplankton composition and the physiological state of phytoplankton driving1150

photoacclimation, i.e., the adjustment of Chl-a in response to light, particularly in1151

the surface ocean, and uncertainties in Chl-a measurements. In addition, in low1152

phytoplankton biomass regions, such as in the subtropical gyres, uncertainties in1153

both satellite retrieved optical properties and Chl-a can be large.1154

Gaps: There is a gap in our mechanistic understanding of how optical proper-1155

ties link to C-phyto, considering the diversity of phytoplankton composition and1156

their physiological state, and the other optically significant substances that can1157

have an impact on the optical properties.1158

Each of the methods, models and algorithms, possess uncertainties, either1159

inherent or owing to the input data, which are infrequently reported. As such,1160

there are gaps in our knowledge of the accuracy of our models and algorithms1161

to derive C-phyto. This includes uncertainties assoicated with direct or indirect1162

measurements of in-situ C-phyto.1163

Opportunities: Long time-series of C-phyto data should be developed by1164

using merged ocean-colour datasets (e.g., OC-CCI, Globcolour and Copernicus1165

Marine Maritorena et al., 2010; Sathyendranath et al., 2019a; Kostadinov et al.,1166

2022), or by adapting algorithms to operate on different ocean colour sensors that1167

cover different time spans (e.g., since 1979 until today; Oziel et al., 2022). These1168

products should include pixel-by-pixel uncertainties. C-phyto satellite algorithms1169
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may be improved by using synergistic information on the abundance and compo-1170

sition of the different optical components (phytoplankton, NAP, CDOM), which1171

may lower the uncertainties in C-phyto retrievals.1172

There are also opportunities to improve C-phyto products by exploring the1173

combined use of satellite data with ecosystem modelling. Directly using satellite1174

Chl-a or phytoplankton community-specific Chl-a for evaluation or assimilation1175

in (coupled-ocean-) biogeochemical models could be a promising avenue for1176

deriving C-phyto (IOCCG, 2020). Other exciting avenues of research include1177

combining models of photoacclimation with size-based approaches (Sathyen-1178

dranath et al., 2020), that can be reconciled with models of primary production,1179

meaning the carbon pools and fluxes are produced in a consistent manner.1180

3.3.4. C-phyto priority 3: Vertical structure1181

Challenges: Considering the difficulties in measuring C-phyto in situ (see1182

C-phyto priority 1) is it very challenging to collect, aggregate and produce an1183

in-situ dataset that is representative of entire euphotic depth and at global scale,1184

required for understanding distributions in C-phyto.1185

Gaps: Since satellite data only delivers information from the first optical1186

depth, the collection of in-situ C-phyto data for validation of satellite products has1187

been largely limited to discrete water sampling at surface depths. For a complete1188

understanding of the role of C-phyto in the ocean carbon cycle, it is imperative1189

that we extend measurements deeper into the water column, encompassing the1190

entire euphotic zone.1191

Satellite, in-situ and modelling data often have large discrepancies in spatial1192

and temporal resolution, particularly in the vertical dimension. There are a few1193

methods designed to combine these different data sets, and help extrapolate the1194

satellite C-phyto products from the surface down through the entire euphotic1195

zone.1196

Opportunities: There are potential opportunities to use autonomous plat-1197

forms such as BGC-Argo floats (Claustre et al., 2020), undulating profilers1198

(Bracher et al., 2020) and moorings (Von Appen et al., 2021), together with1199

satellite remote-sensing and modelling (e.g. through data assimilation), to help1200
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reconstruct, via techniques like artificial intelligence, the 4D view of C-phyto, to1201

better observe phytoplankton biomass dynamics below the ocean surface (e.g.,1202

Brewin et al., 2022).1203

3.4. Dissolved Organic Carbon (DOC)1204

Dissolved Organic Carbon (DOC) is ubiquitous in the ocean and represents1205

a considerable reservoir of carbon, at around 662 Gt C, approximately the size1206

of the atmospheric CO2 pool (Hansell et al., 2009). Marine DOC is also a1207

dynamic carbon component, that fulfills important biogeochemical and ecological1208

functions, and connects terrestrial landscapes (Anderson et al., 2019), freshwater1209

and marine ecosystems and the atmosphere (Carlson and Hansell, 2015; Anderson1210

et al., 2019). Continuously and accurately quantifying DOC stocks and fluxes1211

in the ocean is critical to our understanding of the global role of DOC and its1212

susceptibility to change.1213

3.4.1. State of the art in DOC1214

In recent years, synoptic monitoring of DOC has been attempted using optical1215

techniques and Earth Observation. A wide range of methods have been trialled,1216

mainly empirical, including linear regressions, artificial neural network algorithm,1217

random forest classification, and gradient boosting. These approaches typically1218

estimate DOC concentration using single or multiple variables, including: remote-1219

sensing reflectance, remotely-sensed coloured dissolved organic matter (CDOM)1220

absorption coefficients, sea-surface salinity, SST, chlorophyll-a concentration,1221

and modelled mixed layer depths. For an in-depth review of the status of DOC1222

monitoring, the reader is referred Section 4.1.2. of Brewin et al. (2021) and Fichot1223

et al. (In Prep, this issue).1224

Four key priorities were identified following presentations and discussions at1225

the workshop. These are summarised in Table 5 and include: 1) temporal coverage1226

of the coastal ocean; 2) understanding the relationship between CDOM and DOC;1227

3) identification of sources and reactivity; and 4) vertical measurements.1228
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3.4.2. DOC priority 1: Spatial and temporal coverage of the coastal ocean1229

Challenges: The remote sensing of DOC in the surface ocean is facilitated1230

by the optical detection of CDOM (the coloured component of dissolved matter),1231

particularly in the coastal ocean, where DOC and CDOM can be tightly correlated1232

(Ferrari et al., 1996; Vodacek et al., 1997; Bowers et al., 2004; Fichot and Benner,1233

2012; Tehrani et al., 2013). In such cases, the detection of DOC from space relies1234

on the optical detection of CDOM absorption coefficients, ag(λ), from remote-1235

sensing reflectance, followed by the estimation of DOC from ag(λ). However, as1236

coastal regions are highly dynamic and heterogenous, quantifying DOC stocks and1237

fluxes require satellite optical monitoring systems with high temporal and spatial1238

coverage, and accurate atmospheric correction (e.g., separating the contribution of1239

Rayleigh scattering in the atmosphere is particularly important for DOC retrievals;1240

Juhls et al., 2019). High latitudes, where high loads of DOC are transported from1241

rivers into the sea (e.g., Arctic rivers, Baltic) are difficult to view using passive1242

ocean colour satellites in winter months.1243

Gaps: At present, accurate estimates of DOC stocks and fluxes in coastal1244

environments are severely limited by the temporal coverage of existing ocean-1245

color satellites. Current satellites offer revisit times of about five times per week,1246

at best (though this depends on latitude and time of year). More appropriate1247

revisit times for nearshore coastal waters would need to be an order of magnitude1248

higher (e.g., ideally 3-5 times per day) to adequately capture the dynamics of1249

DOC and facilitate the accurate estimation of DOC fluxes across the boundaries1250

of coastal systems. This is especially important for the nearshore regions of the1251

coastal ocean which can be strongly influenced by tides, current, and rivers.1252

Opportunities: With the advent of geostationary ocean-colour satellites, such1253

as the Geostationary Ocean Color Imager (GOCI) and the upcoming hyperspectral1254

NASA Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR),1255

capable of imaging multiple times daily, there are exciting opportunities to address1256

these challenges and gaps at regional scales (e.g., see Huang et al., 2017). NASA’s1257

GLIMR (launch expected in 2027) will help quantify DOC stocks and fluxes in1258

coastal environments of the continental USA and in targeted regions of coastal1259
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South America (e.g., Amazon River outflow, Orinoco River Outflow) by providing1260

multiple observations per day (hourly), at around 300 m resolution. Reflectances1261

from GLIMR will also be hyperspectral (10 nm resolution) across the UV-NIR1262

range (340 -1040 nm) and will therefore provide the opportunity for improved1263

accuracy of DOC concentration retrievals. We recommend continuing efforts1264

towards deploying additional geostationary and hyperspectral satellites to improve1265

the temporal coverage of other coastal regions around the world.1266

3.4.3. DOC priority 2: Understanding and constraining the relationship between1267

CDOM and DOC1268

Challenges: Improvements in satellite CDOM absorption retrievals are1269

needed, with uncertainties in algorithms often higher than other inherent optical1270

properties derived from ocean colour data (Brewin et al., 2015). The relationships1271

between DOC and CDOM absorption, commonly used to quantify stocks of DOC1272

in coastal regions, tends to be variable seasonally and across coastal systems1273

(Mannino et al., 2008; Massicotte et al., 2017; Cao et al., 2018). Furthermore, the1274

dynamics of CDOM and DOC are largely decoupled in the open ocean (Nelson1275

and Siegel, 2013), making the accurate remote sensing of DOC concentration1276

challenging in much of the open ocean.1277

Gaps: There are gaps in our understanding of the relationship between DOC1278

and CDOM absorption coefficients that need to be addressed, for example, rela-1279

tionships are likely to depend on the type of river system studied, and its optical1280

constituents. There are also gaps in our understanding of the various physical1281

and biogeochemical processes that impact differently CDOM absorption and1282

DOC, depending on DOC quality (e.g., Miller and Moran, 1997; Tzortziou et al.,1283

2007; Helms et al., 2008). This will improve our understanding of regional and1284

seasonal variability in the relationship between these variables, and consequently1285

improve DOC estimates from space. Additionally, there is a lack satellite UV and1286

hyperspectral data for resolving DOC and its composition.1287

Opportunities: We recommend the community work towards improving this1288

understanding through a combination of the following four efforts.1289
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1. Utilise the spectral slope of CDOM absorption, S 275−295, to constrain the1290

variability between CDOM and DOC in the ocean and improve empirical1291

algorithms. In river-influenced coastal systems, S275−295 has been shown1292

to be a useful parameter to constrain the variability between CDOM and1293

DOC (Fichot and Benner, 2011; Cao et al., 2018). It has also been shown1294

that this parameter can be retrieved empirically with reasonable accuracy1295

from ocean colour, therefore providing a means to improve DOC retrievals1296

(Mannino et al., 2008; Fichot et al., 2013, 2014; Cao et al., 2018). Future1297

studies could look into developing similar approaches for other regions1298

of the ocean. Retrievals of S275−295 requires very accurate atmospheric1299

correction, which is challenging in coastal waters.1300

2. Develop mechanistic models of the processes regulating the relationship1301

between CDOM and DOC, by integrating new insight on the effects of pho-1302

tobleaching. Recent efforts have quantified and included in biogeochemical1303

models (e.g., Clark et al., 2019) the effects of photobleaching on CDOM1304

absorption coefficient spectra, which in turn, may improve our ability to1305

constrain the relationship between CDOM and DOC (Swan et al., 2013;1306

Zhu et al., 2020). Similar efforts should be conducted for understanding1307

other processes such as the marine biological net production of DOC. A1308

quantitative appreciation of these processes is also critical to understand1309

the influence of climate-driven change on the relationship between CDOM1310

and DOC.1311

3. Harness opportunities to acquire high-quality field measurements of DOC1312

and CDOM absorption across different seasons and marine environments.1313

This could be achieved by tapping into field campaigns that collect inher-1314

ent and apparent optical properties for satellite validation, and perform1315

additional concurrent sampling for DOC. Many field datasets include mea-1316

surements of CDOM absorption coefficients but lack DOC measurements.1317

It should be noted, however, that while many labs have the capability to1318

measure CDOM, much fewer labs can measure DOC. Coordinated efforts1319
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should therefore be considered to ensure that CDOM and DOC are mea-1320

sured together as often as possible. This could be aided by the development1321

of semi-automative methods to measure DOC, that could be used alongside1322

similar techniques for measuring CDOM absorption (e.g., Dall’Olmo et al.,1323

2017). This could facilitate the development of improved satellite DOC1324

algorithms.1325

4. Harnessing new satellite sensors for CDOM and DOC retrievals. For exam-1326

ple, consideration in the allocation and characteristics of spectral wavebands1327

for DOC studies has also gone into the development of NASA’s PACE mis-1328

sion (Werdell et al., 2019). Harnessing optical water type frameworks1329

for algorithm selection and merging for better separation of NAP-CDOM1330

effects.1331

3.4.4. DOC priority 3: Identification of source and reactivity1332

Challenges: To quantify the cycling, fate, and impacts of DOC in the ocean,1333

requires identifying specific pools of DOC of different sources and reactivity.1334

This is particularly true for the coastal ocean. There is likely to be large gradients1335

in the sources and reactivity of DOC as we transition from inland waters to coasts1336

and the open ocean.1337

Gaps: Although fluorescence excitation-emission matrix methods have been1338

used as an in-situ optical indicator of dissolved organic matter (DOM) origin and1339

reactivity (Mopper and Schultz, 1993; Kowalczuk et al., 2013), there has been1340

few studies assessing whether the DOM fluoresced signal can be detected from1341

remote-sensing reflectance.1342

Opportunities: We recommend the community puts efforts towards assessing1343

whether the fluorescence of DOC and CDOM, originating from specific sources1344

(e.g., riverine, effluent), can have a measurable influence on remote-sensing re-1345

flectance. Recent and upcoming hyperspectral sensors (e.g., TROPOMI, GLIMR,1346

PRISMA, PACE, see Table 10) have (or will have) improved signal-to-noise1347

ratio, as well as enhanced spectral information in the UV-visible range, and1348

adequate spatial resolution, that could facilitate detection of the fluorescence1349
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signature of certain pools of DOC and CDOM (Wolanin et al., 2015; Oelker et al.,1350

2022; Harringmeyer et al., 2021). Such efforts can be facilitated with radiative1351

transfer simulations (e.g., Hydrolight, www.hydrolight.info, and SCIATRAN,1352

https://www.iup.uni-bremen.de/sciatran/). However, fluorescence signature of1353

DOC is currently not well understood, and we require a better quantitative knowl-1354

edge of the fluorescence quantum yield matrix of DOC and CDOM and how it1355

varies with specific DOM sources (Wünsch et al., 2015).1356

Active remote-sensing approaches based on laser-induced fluorescence could1357

also potentially facilitate the sourcing of DOM in the surface ocean. Airborne1358

laser-based measurements of DOM have been used in the past, but these only used1359

a single excitation-emission wavelength pair and were used to specifically measure1360

DOC (Hoge et al., 1993; Vodacek, 1989). The use of multiple, carefully chosen1361

excitation-emission wavelength combinations could potentially help identify1362

specific pools of DOM with unique fluorescence signatures.1363

3.4.5. DOC priority 4: Vertical measurements1364

Challenges: The remote sensing of CDOM and DOC is limited to surface1365

measurements. Accurately extrapolating these measurements to depth requires1366

understanding of vertical variability. At present, depth variability is generally1367

assumed or estimated using empirical or statistical approaches (e.g., neural net-1368

works) trained with field observations (Mannino et al., 2016).1369

Gaps: Approaches that extrapolate surface DOC and CDOM to depth require1370

extensive in-situ datasets (vertical profiles) of DOC and CDOM, representative of1371

a wide range of conditions. Though efforts have been made in this regard (Nelson1372

and Siegel, 2013; Hansell, 2013), gaps exist for many regions and seasons.1373

Opportunities: In-situ measurements from autonomous platforms like BGC-1374

Argo equipped with DOM-fluorescence sensors can provide valuable informa-1375

tion about the depth-dependency of DOM in the ocean (Claustre et al., 2020).1376

BGC-Argo radiometric measurements in the UV can also be used to get CDOM1377

absorption proxies (Organelli et al., 2017; Organelli and Claustre, 2019). Re-1378

cently, projects such as AEOLUS COLOR (CDOM-proxy retrieval from aeOLus1379

ObseRvations), have focused on developing UV-lidar-based techniques to retrieve1380
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sub-surface information about CDOM in the ocean (Dionisi et al., 2021). The1381

ESA AEOLUS mission is a UV-lidar (355 nm) mission originally designed for1382

the retrieval of atmospheric properties, but the UV capabilities of this active1383

sensor provides an opportunity to retrieve in-water properties of CDOM. Within1384

ESA project S5POC, Kd at three wavelengths (UVAB, UVA and short blue) were1385

developed (Oelker et al., 2022), which could help provide insight on the sources1386

of CDOM. Additionally, there is potential to exploit the high spectral resolution1387

of TROPOMI (e.g. the filling of the Fraunshofer lines by FDOM) to acquire1388

information on the sources of DOM. We recommend that the community continue1389

to explore original ideas to improve the detection of CDOM and DOC below1390

the surface. There are also opportunities to harness mechanistic modelling ap-1391

proaches (physical and biogeochemical modelling) to improve estimation of DOC1392

dynamics at depth (Mannino et al., 2016).1393

3.5. Inorganic carbon and fluxes at the ocean interface (IC)1394

Inorganic carbon in the ocean can be partitioned into dissolved (DIC) and1395

particulate (PIC) form. Relative to DIC, PIC is a small pool of carbon at around1396

0.03 Gt C (Hopkins et al., 2019), but annual production is considered highly1397

variable and estimated to be of the order 0.8-1.4 Gt C y−1 (Feely et al., 2004).1398

This PIC is present in the form of particulate calcium carbonate (CaCO3), with1399

coccolithophores, pteropods and foraminifera thought to be the main sources of1400

PIC in the ocean (Schiebel, 2002; Feely et al., 2004; Buitenhuis et al., 2019).1401

Despite its biological growth the formation of PIC has the net-effect of shifting1402

the carbonate chemistry towards higher CO2 in the water and decreasing its pH1403

(Zeebe and Wolf-Gladrow, 2001; Rost and Riebesell, 2004; Zeebe, 2012).1404

In contrast, DIC constitutes the largest pool of carbon in the ocean, at around1405

38,000 Gt C (Hedges, 1992), and connects carbon in the ocean with the atmo-1406

sphere and with the land. CO2 dissolves in seawater and reacts with water to form1407

carbonic acid (H2CO3). Carbonic acid is unstable and dissociates into bicarbonate1408

(HCO−3 ), carbonate (CO2−
3 ) and protons (H+). The equilibrium between these1409

forms controls ocean pH. From a biological viewpoint the gaseous quantity of1410

CO2 in seawater, pCO2, is modulated by photosynthesis (primary production) and1411
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respiration (mineralization) which is captured within net community production1412

estimates.1413

The flux or movement of CO2 between ocean and atmosphere is often de-1414

scribed using a formation first described by Liss and Slater (1974), which can be1415

expressed as Flux= kK0(pCO2,w − pCO2,a) (Wanninkhof, 2014); where k is the1416

gas transfer velocity (equivalent to the inverse of the resistance to gas transfer), K01417

is the constant of solubility of gas, and (pCO2,w−pCO2,a) is the difference between1418

the CO2 partial pressures in the ocean and the atmosphere (∆CO2), respectively1419

(see Woolf et al., 2016, for discussion on how best to derive ∆CO2). Ocean1420

temperature, and to a less extent salinity, is a strong modulator of the solubility of1421

CO2 in seawater (Takahashi et al., 2009) and is thus an important parameter for1422

determining the ∆CO2. k is often parameterised as a function of wind speed and1423

temperature (e.g., Schmidt number; Wanninkhof, 2014).1424

3.5.1. State of the art in inorganic carbon and air-sea fluxes1425

Methods to remotely sense PIC have focused on individual or multi-spectral1426

band optical detection of coccolithophores (Gordon et al., 2001; Balch et al., 2005;1427

Mitchell et al., 2017), with some using time series to improve data consistency1428

(Shutler et al., 2010). Due to their unique optical signature (when the plankton1429

dies coccoliths are detached causing the water to appear spectrally white), coccol-1430

ithophore blooms have been mapped via satellite ocean colour since the launch1431

of NASA’s CZCS satellite sensor in 1978 (Holligan et al., 1983; Brown and1432

Yoder, 1994). The challenges of detection include: detecting coccolithophores1433

and their associated PIC at low concentrations (or prior to their coccoliths be-1434

coming detached), during bloom events, in the presence of bubbles (e.g. in the1435

Southern Ocean), and to remove the effects of suspended particulates that exhibit1436

similar spectral properties in shelf seas (Shutler et al., 2010). Laboratory and1437

field observations (Voss et al., 1998; Balch et al., 1999, 1996; Smyth et al., 2002)1438

have informed PIC algorithm development for determining calcite concentrations1439

by relating coccolithophore abundance and morphology to PIC concentrations.1440

Currently NASA Ocean Biology DAAC distributes a PIC concentration product1441

that merges Balch et al. (2005) and Gordon et al. (2001), and there is also a1442
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developmental PIC product available (Mitchell et al., 2017).1443

DIC and other key carbonate system parameters (e.g., total alkalinity (TA),1444

pH, and pCO2) are more challenging to determine from satellite observations1445

as they don’t have a unique spectral signature. However, alkalinity is strongly1446

conservative with salinity so this has led to the development of many regional1447

relationships to predict TA from salinity (e.g., Cai et al., 2010; Lefévre et al.,1448

2010) and DIC from salinity and temperature (e.g. Lee et al., 2006), as well as1449

global relationships using a suite of physical and chemical parameters (e.g., Sasse1450

et al., 2013) and their application to satellite remote sensing has been identified1451

(Land et al., 2015). For example, total alkalinity has been estimated using the1452

strong relation with sea surface salinity (SSS) which in the last decade has been1453

measured by different satellites, such as ESA’s Soil Moisture and Ocean Salinity1454

satellite (SMOS; Reul et al., 2012), NASA/CONAE Aquarius (Lagerloef et al.,1455

2013), and NASA’s Soil Moisture Active Passive satellite (SMAP Tang et al.,1456

2017). More recently, efforts to combine physical and optical satellite ocean1457

observations with climatological and re-analysis data products has opened the1458

door to remote estimation of the complete marine carbonate system via regional1459

and global relationships as well as new machine learning methods and carbonate1460

system calculation packages (e.g., Land et al., 2019; Gregor and Gruber, 2021).1461

Large scale air/sea flux estimates typically make use of the Surface Ocean1462

CO2 ATlas (SOCAT, https://www.socat.info/index.php/data-access/; Bakker et al.,1463

2016) and/or global climatologies of surface seawater pCO2 using data interpo-1464

lation/extrapolation and neural network techniques (e.g., Takahashi et al., 2009;1465

Rödenbeck et al., 2013; Landschützer et al., 2020) to produce spatially and tem-1466

porally complete fields. These pCO2 fields can be coupled with satellite retrievals1467

of SST, wind speed, and other variables, to calculate the air-sea CO2 flux (e.g., as1468

demonstrated with the FluxEngine toolbox; Shutler et al., 2016). A key parameter1469

for the calculation of the air-sea CO2 fluxes is the xCO2 fraction in air. Global1470

coverage of atmospheric CO2 estimates is available from multiple satellite mis-1471

sions (e.g., GOSAT 2009-present, OCO-2 2014-present, OCO-3 2019-present).1472

Satellite observations have also been combined with model output to estimate1473
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pCO2 and air-sea flux (e.g., Arrigo et al., 2010). Whilst estimates of pCO2 and1474

air-sea flux have been achieved solely from satellite observations (e.g., Ono et al.,1475

2004; Borges et al., 2009; Lohrenz et al., 2018). It is also possible to calculate1476

seawater pCO2 from observations of TA and DIC and using marine carbonate1477

system calculations (e.g., Humphreys et al., 2022). For a more in-depth review1478

of status of using satellite remote sensing for determining inorganic carbon and1479

fluxes at the ocean interface, the reader is refereed to Shutler et al. (Submitted).1480

Modelling studies can also help inform satellite approaches. They have been1481

used to evaluate the drivers of the marine carbonate system (e.g., Lauderdale1482

et al., 2016) and examine potential impacts of extreme and compound events1483

(e.g., Salisbury and Jönsson, 2018; Burger et al., 2020; Gruber et al., 2021). Sea-1484

water pCO2 and air-sea CO2 fluxes can also be estimated using dynamic ocean1485

biogeochemical models (Hauck et al., 2020) and data-assimilation-based models1486

(e.g., Verdy and Mazloff, 2017). ECCO-Darwin (Carroll et al., 2020, 2022) is one1487

such example which is initialised with a suite of physical variables, biogeochem-1488

ical properties and also TA, DIC and pCO2 from datasets such as SOCAT and1489

GLODAP. It assimilates a combination of physical and biogeochemical data in1490

order to produce physically-conserved properties. As such models continue to1491

evolve, it will be increasingly possible to use them to assess regional and global1492

scale carbon inventories as well as fluxes, and evaluate them with satellite-based1493

products.1494

At the workshop, four priorities were identified in relation to the detection of1495

inorganic carbon and the air-sea flux of CO2 from space (summarised in Table1496

6), including: 1) in-situ data; 2) satellite retrievals and mapping uncertainty; 3)1497

models and data integration; and 4) mechanistic understanding of gas transfer.1498

3.5.2. IC priority 1: In-situ data1499

Challenges: Considering many components of inorganic carbon are not di-1500

rectly observable from space, there is a strong reliance on in-situ data. Integrating1501

in-situ data products with satellite data is challenging, owing to large differences1502

in spatial and temporal resolution. Furthermore, it can be challenging to integrate1503

in-situ datasets from different sources and collaborators, without community1504
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consensus on best practices and consistent use of traceable reference materials1505

and consistent standards.1506

Gaps: Improved spatial and temporal coverage of field observations in key1507

regions and times, not only at the surface but also the full water column, is a1508

key requirement for the development and validation and use of satellite-based IC1509

approaches. Air-sea CO2 flux assessments will always be spatially and temporally1510

limited by the extent and number of the in-situ data that underpin them. Addition-1511

ally, our understanding of long-term changes in pCO2 and fluxes, in key ocean1512

regions (e.g., the Southern Ocean), is limited by a lack of in-situ data time-series1513

stations (Sutton et al., 2019). At present, there is no dedicated framework for1514

sustained, long-term monitoring of seawater pCO2 (particularly in South Ocean1515

which contributes around 40 % of the anthropogenic carbon uptake) which is1516

concerning as without these no satellite methods can be used.1517

There are also gaps in our ability to assure consistent quality of these in-situ1518

observations. For example, TA and DIC observations require a certified reference1519

material (Dickson, 2010), that needs to be sustained into the future (at present1520

there is only one laboratory able to produce it). Community-wide agreement on1521

best practices and approaches is needed for measurements that enable accurate1522

estimation of air-sea CO2 fluxes.1523

Opportunities There are opportunities to improve the spatial and temporal1524

resolution of in-situ data through autonomous platforms, such as BGC-Argo floats1525

(Williams et al., 2017; Bittig et al., 2018; Claustre et al., 2020) and autonomous1526

surface vehicles or saildrones (Sabine et al., 2020; Chiodi et al., 2021; Sutton1527

et al., 2021). There may be opportunities to extend recent efforts to develop1528

Fiducial Reference Measurements (FRM) for satellite products (e.g., Le Menn1529

et al., 2019; Banks et al., 2020; Mertikas et al., 2020) to in-situ measurements1530

of inorganic carbon. This could help towards generating robust, community-1531

accepted processes and protocols, needed to satisfy issues related to integrating1532

in-situ datasets from different sources.1533

3.5.3. IC priority 2: Satellite retrievals and mapping uncertainty1534

Challenges: Estimating some components of the inorganic carbon cycle1535
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in optically-complex water is challenging. For example, current PIC satellite1536

products are global and are not as accurate in environments where other highly1537

scattering materials are present (e.g., coastal shelf seas, but see Shutler et al.,1538

2010, who used of machine learning and computer vision approaches), and can1539

be flagged as clouds. For all inorganic products (including TA and , ∆CO2) there1540

are also trade-offs related to retaining the use of satellite algorithms based on1541

theoretical understanding, and harnessing new powerful empirical (blackbox)1542

approaches, such as machine learning.1543

Gaps: The lack of pixel-by-pixel uncertainty estimates in the satellite prod-1544

ucts, for all components of the inorganic carbon cycle and carbonate system, is a1545

major gap that needs to be addressed. There is a crucial lack of coincident in-situ1546

observations of PIC concentrations and other highly scattering materials, along1547

with full spectral measurements of specific inherent optical properties for PIC,1548

needed to improve PIC concentration estimates in optically-complex water.1549

Opportunities: Plans for improved spatial, spectral and temporal resolu-1550

tion of satellite sensors will likely lead to improvements in IC satellite products.1551

For example, in optically complex waters, hyperspectral satellite data may help1552

differentiate among particles that scatter light with high efficiency, and lead to1553

improved PIC products. There may be opportunities to harness and build on1554

recent techniques used to map uncertainty in satellite organic carbon products1555

(e.g., Evers-King et al., 2017; Martínez-Vicente et al., 2017; Brewin et al., 2017a;1556

IOCCG, 2019) for the mapping of uncertainty in satellite inorganic carbon prod-1557

ucts and flux estimates.1558

3.5.4. IC priority 3: Models and data integration1559

Challenges: Bridging the differences in spatial and temporal scales in data1560

products and models, and differences in units (e.g. what is measured versus1561

what is represented in the models), is a major challenge in producing accurate1562

inorganic carbon and flux products. There are also challenges in extrapolating1563

pCO2 observations to the surface and horizontally (see Woolf et al., 2016).1564

Gaps: Closer collaboration between data generators and modellers is required1565

to improve the development of satellite-based inorganic carbon products for1566
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integration into Earth System Models.1567

Opportunities: Enhanced computer processing power, and the development1568

of new statistical tools for big data (e.g., machine learning), offer opportunities1569

to improve model and data integration. There are opportunities to improve1570

model products by reconciling model carbon budgets with both satellite and1571

in-situ observations, for example, by constraining the different terms within1572

the budget. Increases in the amount of data produced from a range of sources1573

(models, satellites, ships, autonomous platforms, etc.) mean that improved links1574

between biogeochemical, physical, optical and biological data could help improve1575

data products (e.g., Bittig et al., 2018). Additionally, assimilation of these large1576

dataset into models could improve reanalysis products, providing accurate, high1577

resolution pCO2, DIC and TA estimations on local, regional and global scales1578

(Verdy and Mazloff, 2017; Rosso et al., 2017; Carroll et al., 2020, 2022).1579

There is a key opportunity to pursue a full and routine integration of in-situ,1580

model, and satellite observations to enable routine assessment of the surface1581

water pCO2, air-sea exchange and the net integrated air-sea flux (or ocean sink)1582

of carbon. This potential has been highlighted and is needed to support policy1583

decisions for reducing emissions (Shutler et al., 2019).1584

3.5.5. IC priority 4: Mechanistic understanding of gas transfer1585

Challenges: Air-sea gas transfer remains a controlling source of uncertainty1586

within global assessments of the oceanic sink of CO2 (Woolf et al., 2019). Despite1587

significant progress in our ability to measure gas exchange, our mechanistic1588

understanding of gas transfer is incomplete (see Yang et al., 2022b).1589

Gaps: There is a need to move away from wind speed as a proxy for air-sea1590

transfer (Shutler et al., 2019) as many other processes control the transfer includ-1591

ing wave breaking, surfactants and bubbles and new advances in understanding1592

are now being made (e.g. Bell et al., 2017; Blomquist et al., 2017; Pereira et al.,1593

2018). The carbon dynamics and air-sea CO2 fluxes within mixed sea ice regions1594

provides further complexities and are poorly understood (see Gupta et al., 2020;1595

Watts et al., 2022) and these regions are expected to grow with a warming climate1596

which illustrates a major gap in understanding.1597
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There are large uncertainties surrounding the influence of near surface tem-1598

perature gradients on air-sea CO2 fluxes (see Watson et al., 2020; Dong et al.,1599

2022), and the role of wave breaking, bubbles and turbulence (see Bell et al.,1600

2017; Blomquist et al., 2017). Carbon dynamics and air-sea CO2 fluxes in mixed1601

sea ice regions are poorly understood (see Watts et al., 2022), which is a major1602

gap in understanding, given that climate at the poles is changing rapidly, affecting1603

sea ice melt and freeze processes and timings.1604

Opportunities: State-of-the-art flux measurement techniques, such as eddy1605

covariance (see Dong et al., 2021), need to be established as FRM. There are1606

then opportunities to exploit these techniques on novel platforms and to use novel1607

autonomous technologies to improve understanding of air-sea CO2 fluxes. The1608

novel tools should be applied in a range of environments (e.g. low winds, high1609

winds, marginal ice zones) to understand specific processes. For example, the1610

influence of near surface temperature gradients on air-sea CO2 fluxes is currently1611

only theoretical, and needs to be quantified/verified by direct observations. Im-1612

provements in wind speed products could aid in better gas transfer (Taboada et al.,1613

2019; Russell et al., 2021), although satellite-derived gas transfer estimates could1614

also be improved if measures other than wind speed are exploited that provide1615

more direct observations of surface structure and turbulence (e.g., sea state or sea1616

surface roughness using radar backscattering observations, see Goddijn-Murphy1617

et al., 2013).1618

3.6. Cross-cutting activities: Blue Carbon (BC)1619

Tidal marshes, mangroves, macroalgae and seagrass beds, collectively referred1620

to as Blue Carbon (BC) ecosystems, are some of the most carbon-dense habitats1621

on Earth. Despite occupying only 0.2 % of the ocean surface, they are thought to1622

contribute around 50 % of carbon burial in marine sediments, with a global stock1623

size in the region of 10 to 24 Gt C (Duarte et al., 2013). In addition to providing1624

many essential services, such as coastal storm and sea level protection, water1625

quality regulation, wildlife habitat, biodiversity, shoreline stabilization, and food1626

security, they are highly productive ecosystems that have the capacity to sequester1627

vast amounts of carbon and store it in their biomass and their soils (Mcleod1628
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et al., 2011). However, their carbon sequestration capacity, carbon storage, and1629

carbon export, depend on many critical processes, including inundation dynamics,1630

sea level rise, air- and water pollution, changes in salinity regimes, and rising1631

temperatures. All of which are sensitive to human impacts and climate change1632

(Macreadie et al., 2019) with coastal ecosystems being a highly active interface1633

between human and natural infrastructures and a complex mix of natural and1634

anthropogenic processes.1635

The role that blue carbon habitats play in regional and global carbon budgets1636

and fluxes is a big focus in carbon research (Mcleod et al., 2011). One of the1637

biggest unknowns and largest sources of uncertainty in quantifying the role these1638

systems play in global carbon budgets and fluxes, is mapping the spatial extent1639

of BC and how it is changing. Satellites can play a major role in this, but an1640

important distinction compared to green carbon, is that the carbon is primarily1641

stored below rather than above ground.1642

3.6.1. State of the art in Blue Carbon1643

Remote sensing technologies are increasingly used for studying BC ecosys-1644

tems, owing to their synoptic capabilities, repeatability, accuracy and low cost1645

(Hossain et al., 2015; Pham et al., 2019b; Campbell et al., 2022). Various tech-1646

niques have been utilised for this purpose, including spectral optical imagery,1647

synthetic aperture radar (SAR), lidar and aerial photogrammetry (Pham et al.,1648

2019a; Lamb et al., 2021). Of these technologies, high spatial resolution, multi-1649

spectral and hyper-spectral optical imagery are used more commonly, with the1650

Landsat time-series thought to be the most widely-used dataset for studying1651

changes in BC remotely over the past decade (Giri et al., 2011; Pham et al., 2019a;1652

Yang et al., 2022c).1653

In recent years, there has been an increasing use of high resolution Sentinel-21654

and Landsat-8/9 imagery for mapping coastal BC, such as tidal marshes (e.g.,1655

Sun et al., 2021; Cao and Tzortziou, 2021) and mangroves (e.g., Castillo et al.,1656

2017). High frequency and high spatial resolution commercial satellites are1657

also increasingly being used for BC research. For example, the PlanetScope1658

constellation, DigitalGlobe’s WorldView-2, and Planet’s RapidEye satellites, are1659
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offering new insights into seagrass mapping (Wicaksono and Lazuardi, 2018;1660

Traganos and Reinartz, 2018; Coffer et al., 2020). Despite being challenged1661

by the optical complexity of nearshore coastal waters, and accurate nearshore1662

atmospheric correction (Ibrahim et al., 2018; Tzortziou et al., 2018), submerged1663

aquatic vegetation habitats are now being studied remotely. For example, Huber1664

et al. (2021) used Sentinel-2 data, together with machine learning techniques1665

and advanced data processing, to map and monitor submerged aquatic vegetation1666

habitats, including kelp forests, eelgrass meadows and rockweed beds, in Denmark1667

and Sweden. Optical satellite remote sensing has been increasingly used for1668

mapping benthic and pelagic macroalgae (e.g., Gower et al., 2006; Hu, 2009;1669

Cavanaugh et al., 2010; Hu et al., 2017; Wang et al., 2018; Schroeder et al., 2019;1670

Wang and Hu, 2021), and has highlighted that macroalgae blooms are increasing1671

in severity and frequency (Gower et al., 2013; Smetacek and Zingone, 2013; Qi1672

et al., 2016, 2017; Wang et al., 2019), with implications for carbon fixation and1673

sequestration (Paraguay-Delgado et al., 2020; Hu et al., 2021).1674

International efforts have focused on translating science into policy, man-1675

agement and finance tools for conservation and restoration of blue carbon1676

ecosystems, for example, through the Blue Carbon Initiative (https://www.1677

thebluecarboninitiative.org). Large scale mapping of ecosystem extent, change,1678

and attributes such as carbon, is essential for blue carbon prioritisation and im-1679

plementation at global to local scales, and remote sensing plays a key role in1680

this. For example, Goldberg et al. (2020) used satellite observations to help map1681

mangrove coverage and change, and understand anthropogenic drivers of loss.1682

The Global Mangrove Watch global mangrove forest baseline (taken as the year1683

2010) was recently updated (v2.5) and has resulted in an additional of 2,660 km2,1684

yielding a revised global mangrove extent of 140,260 km2 (Bunting et al., 2022).1685

However, this needs to be built upon for BC as different species will have different1686

below-ground biomass. Therefore, the carbon trapping efficiency and carbon1687

uptake needs to be measured and used to calibrate maps of habitat extent. The1688

development of similar tools and baselines for seagrass, salt marsh, and kelp1689

ecosystems is needed. For a recent review on the topic of remote sensing of BC,1690
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the reader is referred to Pham et al. (2019a).1691

At the workshop, three priorities were identified in relation to the remote1692

sensing of BC, these are summarised in Table 7 and include: 1) satellite sensors;1693

2) algorithms, retrievals and model integration; and 3) data access and accounting.1694

3.6.2. BC priority 1: Satellite sensors1695

Challenges: Owing to the high temporal variability and heterogeneity of1696

many BC ecosystems (tidal or otherwise), there is a requirement for monitoring1697

at high temporal (hourly) and spatial (tidal) scales. This is challenging with the1698

current fleet of Earth Observing satellites.1699

Gaps: Although Landsat has proven vital for the long-term monitoring of1700

some BC ecosystems (e.g., Ha et al., 2021), there is a lack of long-term satellite1701

datasets for change detection in many BC ecosystems.1702

Opportunities: New sensors and techniques are leading to significant ad-1703

vancements in the spatial and temporal characterization and monitoring of BC1704

ecosystems. New hyperspectral observations (e.g., PACE, GLIMR, PRISMA;1705

DESIS, EnMAP; SBG; CHIME) at high to medium resolution and global scale,1706

have the potential to distinguish differences between mangrove, seagrass, salt1707

marsh species, and estimate satellite products relevant to carbon quality. High1708

spatial resolution (3-5 m) imagery from constellations of satellite sensors (e.g.,1709

PlanetScope) provides an unprecedented dataset to study vegetation characteris-1710

tics in BC ecosystems (Warwick-Champion et al., 2022). Multiple images per day1711

from new geostationary satellite instruments (e.g., GLIMR), will allow to capture1712

tidal dynamics in BC ecosystems, and monitor them (e.g., seagrass meadows)1713

under optimum conditions. Additionally, there is scope to build on efforts to1714

develop satellite climate records (e.g., through ESA’s CCI) with a focus on BC, to1715

help develop the long-term data records needed.1716

3.6.3. BC priority 2: Algorithms, retrievals and model integration1717

Challenges: Considering many BC remote sensing approaches are regional,1718

they are not easily applied (or have been tested) at global scale. Owing to the1719

complexity of some of the techniques, uncertainty estimation for carbon fluxes in1720
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BC ecosystems is particularly challenging. For detecting subaquatic vegetation1721

(and some other BC ecosystems), there are large uncertainties in the impact of1722

the atmosphere and water depth on the signal. Considering large quantities of1723

carbon are stored in the sediments of BC habitats, there are challenges to develop1724

direct or indirect satellite techniques to monitor the dynamics of sediment carbon.1725

The lack of models that link carbon storage and cycling in terrestrial and aquatic1726

ecosystems, further challenges our understanding of carbon fluxes and stocks in1727

BC habitats. Sub-pixel variability poses a challenge when monitoring macroalgae1728

using courser resolution satellite data.1729

Gaps: A major gap to improving algorithms and methods, is the limited1730

availability of in-situ data for development and validation. For example, the lack1731

of measurements on rates (e.g., Sargassum carbon fixation and sequestration1732

efficiency) severely limits our ability to quantify large scale BC budgets (e.g., for1733

pelagic macroalgae, see Hu et al., 2021). The lack of basic ecosystem mapping1734

and change detection for seagrasses and kelp forests, limits our ability to extrap-1735

olate these measurements to large scales using remote sensing. The lack of BC1736

ecosystem models limits our ability to quantify full BC carbon budgets (including1737

soil) globally.1738

Opportunities: With improvements in computation power and statistical1739

analysis of big data (e.g., techniques like machine learning) there is scope to1740

improve satellite algorithms and methods of BC carbon quantification (e.g., Huber1741

et al., 2021). Additionally, fusion of hyperspectral optical and SAR data provides1742

a promising approach for characterization of tidal wetland interfaces, including1743

wetland vegetation characteristics, inundation regimes, and their impact on carbon1744

fluxes. New in-situ monitoring techniques (e.g., drones) are becoming useful to1745

bridge the scales between satellites and in-situ BC monitoring (e.g., Duffy et al.,1746

2018).1747

3.6.4. BC priority 3: Data access and accounting1748

Challenges: Existing products and approaches are not easily accessible by1749

users who have limited remote sensing expertise. With the increasing use of com-1750

mercial satellites, there are challenges to ensure cost-effective monitoring using1751
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remote sensing techniques to track the progress of rehabilitation and restoration1752

of blue carbon ecosystems.1753

Gaps: There are a lack of products suited to project development and carbon1754

accounting. The remote-sensing science community must work directly with1755

policy-makers, conservationists and others, to ensure advances in such products1756

are tailored to applications and that the tools developed are available broadly1757

and equitably. Products are also now needed on global scales, at higher spatial1758

and temporal resolutions, and in a broader range of ecosystems, to support BC1759

integration into national carbon accounts and to expand the application of carbon1760

financing.1761

Opportunities: There is increasing momentum towards efforts to develop BC1762

habitat mapping portals that are user friendly, for example, see Huber et al. (2021).1763

These developments are needed to support blue-carbon based conservation and1764

restoration and have been instrumental in the recent development of blue carbon1765

policy and financing by supporting prioritisation, assessment, and monitoring.1766

There are also potential opportunities to link OMICS with satellite data, as a way1767

to monitor BC ecosystems and their production/export efficiency.1768

3.7. Cross-cutting activities: Extreme Events (EE)1769

Extreme events (EE) can be defined as events that occur in the upper or lower1770

end of the range of historical measurements (Katz and Brown, 1992). Such1771

events occur in the atmosphere (e.g., tropical cyclones, dust storms), ocean (e.g.,1772

marine heatwaves, tsunami’s), and on land (e.g., volcanic eruption, extreme1773

bushfires), affecting marine carbon cycling at multiple spatio-temporal scales1774

(Bates et al., 1998; Jickells et al., 2005; Gruber et al., 2021). With continued1775

global warming in the coming decades, many EE are expected to intensify, occur1776

more frequently, last longer and extend over larger regions (Huang et al., 2015;1777

Diffenbaugh et al., 2017; Frölicher et al., 2018). Extreme events and their effects1778

on marine ecosystems and carbon cycling can be observed, to some extent, by1779

various methods, including: ships, buoys, autonomous platforms and satellite1780

sensors (e.g., Di Biagio et al., 2020; Hayashida et al., 2020; Le Grix et al., 2021;1781
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Wang et al., 2022). Here, we first provide a broad overview of the current state of1782

the art in the topic, before highlighting the priorities identified at the workshop.1783

3.7.1. State of the art in Extreme Events1784

Extremely high temperatures and droughts due to global warming are expected1785

to result in more frequent and intense wildfires and dust storm events in some1786

regions (Huang et al., 2015; Abatzoglou et al., 2019; Harris and Lucas, 2019).1787

Aerosols emitted from wildfire and dust storms can significantly impact marine1788

biogeochemistry through wet and dry deposition (Gao et al., 2019), by supplying1789

soluble nutrients (Schlosser et al., 2017; Barkley et al., 2019), especially essential1790

trace metals such as iron (Jickells et al., 2005; Mahowald et al., 2005, 2011)1791

which can also enhance the export of carbon from the photic zone to depth1792

(Pabortsava et al., 2017). The record-breaking Australian wildfire that occurred1793

between September 2019 and March 2020 was evaluated using a combination of1794

satellite, BGC-Argo float, in-situ atmospheric sampling and primary productivity1795

estimation (Li et al., 2021; Tang et al., 2021; Wang et al., 2022). The wildfire1796

released aerosols that contained essential nutrients such as iron for growth of1797

marine phytoplankton. These aerosols were transported by westerly winds over1798

the South Pacific Ocean and the deposition resulted in widespread phytoplankton1799

blooms. Severe dust storms, observable from space, in arid or semi-arid regions1800

can also transport aerosols to coastal and open ocean waters increasing ocean1801

primary productivity (Gabric et al., 2010; Chen et al., 2016; Yoon et al., 2017).1802

Volcanic eruptions can also fertilise the ocean. The solubility and bioavailabil-1803

ity of volcanic ash is thought to be much higher than mineral dust (Achterberg1804

et al., 2013; Lindenthal et al., 2013), and can act as the source of nutrients and/or1805

organic carbon for microbial plankton, and influence aggregation processes (Wein-1806

bauer et al., 2017). The first multi-platform observation (using SeaWiFS images1807

and in-situ data) of the impact of a volcano eruption was provided by Uematsu1808

et al. (2004), who observed the enhancement of primary productivity caused1809

by the additional atmospheric deposition from the Miyake-jima Volcano in the1810

nutrient-deficient region south of the Kuroshio. Lin et al. (2011) observed ab-1811

normally high phytoplankton biomass from satellite and elevated concentrations1812
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of limiting nutrients, from laboratory experiments, caused by aerosol released1813

by the Anatahan Volcano in 2003. The eruption of Kı̄lauea volcano triggered a1814

diatom-dominated phytoplankton bloom near Hawaii (Wilson et al., 2019). More1815

recently, the eruption of Hunga Tonga–Hunga Ha’apai ejected about 400,0001816

tonnes of SO2, threw ash high into the stratosphere, and caused a catastrophic1817

tsunami on Tonga’s nearby islands (Witze, 2022). Detailed observations on its1818

biochemical effects have yet to be reported.1819

Marine heatwaves (MHWs) (and cold spells) are defined as prolonged periods1820

of anomalously high (low) ocean temperatures (Hobday et al., 2016), which1821

can have devastating impacts on marine organisms and socio-economics sys-1822

tems (Cavole et al., 2016; Wernberg et al., 2016; Couch et al., 2017; Frölicher1823

and Laufkötter, 2018; Hughes et al., 2018; Smale et al., 2019; Cheung et al.,1824

2021). MHWs and cold spells are caused by a combination of local oceanic1825

and atmospheric processes, and modulated by large-scale climate variability and1826

change (Holbrook et al., 2019; Vogt et al., 2022). As a consequence of long-term1827

ocean warming, MHWs have become longer-lasting and more frequent, and have1828

impacted increasingly large areas (Frölicher et al., 2018; Oliver et al., 2018).1829

Satellite and autonomous platforms have been used to study MHWs in many1830

regions, including: the Mediterranean Sea (Olita et al., 2007; Bensoussan et al.,1831

2010), the East China Sea (Tan and Cai, 2018), NE Pacific (Bif et al., 2019), the1832

Atlantic (Rodrigues et al., 2019), Western Australia (Pearce and Feng, 2013) and1833

the Tasman Sea (Oliver et al., 2017; Salinger et al., 2019). Using satellite data1834

with in-situ observations, and profiling floats, recent research showed remarkable1835

changes during marine heatwaves in the oceanic carbon system (Long et al.,1836

2021; Gruber et al., 2021; Burger et al., Accepted) and phytoplankton structures1837

(Yang et al., 2018; Le Grix et al., 2021), that are linked to background nutrient1838

concentrations (Hayashida et al., 2020).1839

Tropical cyclones (called hurricanes or typhoons in different regions) are1840

defined as non-frontal, synoptic scale, low-pressure systems over tropical or sub-1841

tropical waters with organized convection (Lander and Holland, 1993). They1842

can bring deep nutrients up into the photic zone and lead to changes in the1843
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local carbon system by cooling the sea surface (Li et al., 2009; Chen et al.,1844

2017; Osburn et al., 2019). Satellite data are often used for studying tropical1845

cyclones, however, it is difficult to obtain clear images shortly after typhoons due1846

to extensive cloud cover (Naik et al., 2008; Hung et al., 2010; Zang et al., 2020).1847

Combining satellite observations with Argo float and biogeochemical models is1848

increasingly being used to understand biological impacts of tropical cyclones1849

(Shang et al., 2008; Chai et al., 2021). D’Sa et al. (2018) have reported intense1850

changes in dissolved organic matter dynamics after Hurricane Harvey in 20171851

and then reported changes in particulate and dissolved organic matter dynamics1852

and fluxes after Hurricane Michael in 2018 (D’Sa et al., 2019), highlighting1853

the importance of using multiple satellite data with different resolutions as well1854

as hydrodynamic models. Using the constellation of Landsat-8 and Sentinel-1855

2A/2B sensors, Cao and Tzortziou (2021) showed strong carbon export from1856

the Blackwater National Wildlife Refuge marsh into the Chesapeake Bay and1857

increase in estuarine DOC concentrations by more than a factor of two after the1858

passage of Hurricane Matthew compared to pre-hurricane levels under similar1859

tidal conditions.1860

The impacts of marine compound events, defined as extremes in different1861

hazards that occur simultaneously or in close spatio-temporal sequence, are being1862

increasingly studied (Gruber et al., 2021). The dual or even triple compound1863

extremes such as ocean warming, deoxygenation and acidification, could lead to1864

particularly high biological and ecological impacts (Gruber, 2011; Zscheischler1865

et al., 2018; Le Grix et al., 2021; Burger et al., Accepted). The increasing1866

prevalence of extreme Harmful Algae Blooms (HABS) have have been linked1867

with extreme events, and satellites play a major role in their monitoring and1868

management (IOCCG, 2021). Although EE have emerged as a topic of great1869

interest over the past decade, our understanding of their impacts on the marine1870

ecosystems and ocean carbon cycle remains limited.1871

At the workshop, three priorities (summarised in Table 8) were identified in1872

relation to understanding impacts of EE on the ocean carbon cycle: 1) in-situ1873

data; 2) satellite sensing technology; and 3) model synergy and transdisciplinary1874
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research.1875

3.7.2. EE priority 1: In-situ data1876

Challenges: In-situ observations are essential to monitor EE events, especially1877

considering some EE are hard to monitor from space (e.g., clouds with tropical1878

cyclones or volcanic eruptions) and require ground truthing, owing to challenges1879

around satellite retrievals (e.g., atmospheric aerosols with dust events and volcanic1880

eruptions). In some cases EEs can be close to the valid range of measurements1881

retrieved by satellites. Considering the temporal scales of EEs, their sporadic1882

occurrence, and hazardous environments, they are extremely challenging and1883

sometimes dangerous to monitor in-situ using ship-based techniques.1884

Gaps: At present there are major gaps in the availability of in-situ observations1885

of EE events. This severely limits our understanding of their impact on the ocean1886

carbon cycle. Gaps are even greater in subsurface waters. Long time-series1887

measurements with high frequency resolution are also essential to provide robust1888

baselines against which extremes can be detected and attributed.1889

Opportunities: With an expanding network of autonomous in-situ platforms1890

(Chai et al., 2020), we are becoming better positioned to monitor EEs. It will be1891

important that these networks of autonomous in-situ platforms have fast response1892

protocols that can be implemented soon after an extreme event takes place, so1893

valuable data are collected and not missed. It is also essential that funding1894

continues, at the international level, to support these expanding networks of1895

autonomous platforms.1896

3.7.3. EE priority 2: Satellite sensing technology1897

Challenges: Monitoring EE from space requires suitable temporal and spatial1898

coverage to track the event. This varies depending on the nature and location1899

of the event. Some events require high temporal and spatial coverage, which1900

challenges current remote sensing systems. Other challenges exist, for example,1901

dealing with cloud coverage during tropical cyclones, or retrievals in the presence1902

of complex aerosols (e.g., volcanic eruptions).1903
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Gaps: High temporal and spatial resolution data is required for monitoring1904

some EE. There are gaps in satellite data for some EE (e.g., clouds). Algorithms1905

for satellite retrievals during some EE (e.g., volcanic eruptions) require detailed1906

knowledge on the optical properties of the aerosols present. Long time-series1907

remote sensing data are needed for baselines against which extremes can be1908

monitored.1909

Opportunities: Synergistic use of different long-term, high-frequency and1910

high-resolution, remote sensing data may allow better insight into extreme events1911

and their development. For example, combining ocean colour products from1912

ESA’s OC-CCI (e.g., Sathyendranath et al., 2019a) and NOAA’s Climate Data1913

Record Programme (e.g., Bates et al., 2016). The increased spectral, spatial and1914

temporal resolution of the satellite sensors and platforms would help to improve1915

understanding of the response of phytoplankton community (Losa et al., 2017)1916

and their diel cycles to extreme events, and HAB detection, for example, with1917

NASA’s PACE mission (Werdell et al., 2019) and the Korean geostationary GOCI1918

satellite platform (Choi et al., 2012). There are opportunities to derive indicators1919

of EE for determining good environmental status of our seas and oceans, for1920

example, for use in the EU Marine Strategy Framework Directive and OSPAR EE1921

and pollution monitoring.1922

3.7.4. EE priority 3: Model synergy and transdisciplinary research1923

Challenges: Owing to gaps in observational platforms (both satellite and1924

in-situ observations) and the transdisciplinary nature of EE, there is a need to1925

utilise Earth System Models (ESMs) for understanding EE and projecting future1926

scenarios, and to bring together communities from multiple fields.1927

Gaps: Reliable projections of extreme events require higher spatial resolution1928

ESMs, with improved representation of marine ecosystems. ESMs ideally need to1929

include prognostic representations of EE processes, and improvements are needed1930

in coupling with land via aerosol emissions and deposition due to fires or due to1931

dust. Transdisciplinary research on the impact of extremes on marine organisms1932

and ecosystem services is needed to close knowledge gaps.1933

Opportunities: With enhancements in computation power and improvements1934
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in ESMs and data assimilation techniques, there is likely to be an increasing1935

use of ESMs for understanding EE, and especially marine compound events. To1936

promote cross-disciplinary research, support is needed for collaborative projects1937

and digital platforms, to make data digestible to non-experts (e.g., Giovanni,1938

MyOcean).1939

3.8. Cross-cutting activities: Carbon Budget Closure (CBC)1940

Quantifying the ocean carbon budget and understanding how it is responding1941

to anthropogenic forcing is a major goal in climate research. It is widely accepted1942

that the ocean has absorbed around a quarter of CO2 emissions released anthro-1943

pogenically, and that the ocean uptake of carbon has increased in proportion to1944

increasing CO2 emissions (Aricò et al., 2021). Yet, our understanding of the pools1945

of carbon in the ocean, the processes that modulate them, and how they interact1946

with the land and atmosphere, is not satisfactory enough to make confident predic-1947

tions of how the ocean carbon budget is changing. Improving our understanding1948

requires a holistic and integrated approach to ocean carbon cycle research, with1949

monitoring systems capable of filling the gaps in our understanding (Aricò et al.,1950

2021). Satellites can play a major role in this (Shutler et al., 2019).1951

3.8.1. State of the art in Carbon Budget Closure1952

Each year, the international Global Carbon project produces a budget of1953

the Earth’s carbon cycle (https://www.globalcarbonproject.org/about/index.htm),1954

based on a combination of models and observations. In the most recent report1955

(Friedlingstein et al., 2022), for the year 2020, and for a total anthropogenic1956

CO2 emission of 10.2 Gt C y−1 (±0.8 Gt C y−1), the oceans were found to ab-1957

sorb 3.0 Gt C y−1 (±0.4 Gt C y−1), similar to that of the land at 2.9 Gt C y−1 (±1.01958

Gt C y−1). Building on earlier reports (e.g., Hauck et al., 2020), this latest re-1959

port highlighted an increasing divergence, in the order of 1.0 Gt C y−1, between1960

different methods, on the strength of the ocean sink over the last decade (Friedling-1961

stein et al., 2022), with models reporting a smaller sink than observation-based1962

data-products (acknowledging that observation-based data-products are heavily1963

extrapolated). Results from this report suggest our ability to predict the ocean1964
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sink could be deteriorating. Understanding the causes of this discrepancy is1965

undoubtedly a major challenge. Possible causes include: uncertainty in the river1966

flux adjustment that needs to be added to the data-products in order to account for1967

different flux components being represented in models and data-products; data1968

sparsity; methodological issues in the mapping of methods used in data-products;1969

underestimation of wind speeds in the climate reanalyses (Verezemskaya et al.,1970

2017), model physics biases; possible issues in air-sea gas exchange calculations;1971

and underestimation of the role of biology in air-sea gas exchange. Or possibly1972

some compound effects of these causes.1973

It is clear satellite data can help in addressing this issue. For example, through1974

assimilation of physical data (temperature, salinity, altimeter) into high resolution1975

physical models, to improve model physics (e.g., Verdy and Mazloff, 2017; Carroll1976

et al., 2020) or ocean colour data assimilation to improve the representation of1977

biology (e.g., Gregg, 2001, 2008; Rousseaux and Gregg, 2015; Gregg et al., 2017;1978

Ciavatta et al., 2018; Skákala et al., 2018). A recent budget analysis using ECCO-1979

Darwin successfully managed to close the global carbon budget "gap” between1980

observation-based products and biogeochemical models (see Carroll et al., 2022).1981

Other ways satellites could help include: by improving observation-based data-1982

products (e.g. using direct SST skin measurements Watson et al., 2020), through1983

improved estimates or river-induced carbon outgassing and deposition in the1984

sediments, and even through better understanding of the way ocean biology is1985

responding to climate (Kulk et al., 2020; Li et al., 2021; Tang et al., 2021; Wang1986

et al., 2022). On this latter point, whereas it is accepted that biology is critical1987

to maintaining the surface to depth gradient of DIC (estimated to be responsible1988

for around 70 % of it; Sarmiento and Gruber, 2006), which creates a surface1989

air-sea CO2 disequilibrium promoting ocean carbon uptake, the role of biology in1990

ocean anthropogenic CO2 update has been thought to be minor, based on a lack of1991

evidence that the biological carbon pump has changed over the recent (industrial)1992

period, or that any change is sufficient to impact anthropogenic CO2 uptake. An1993

assumption that is now being challenged. It has been shown in ocean models1994

that with a future reduced buffer factor, the CO2 uptake may increase during1995
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the phytoplankton growth season (Hauck and Völker, 2015). This ‘seasonal1996

ocean carbon cycle feedback’ leads to an increase of ocean carbon uptake by 8 %1997

globally in a high-emission scenario RCP8.5 by 2100 (Fassbender et al., 2022).1998

Increasing amplitudes of the seasonal cycle of pCO2 can already be determined1999

in pCO2-based data-products (Landschützer et al., 2018).2000

Satellite ocean carbon products have expanded in recent years (CEOS, 2014;2001

Brewin et al., 2021), to the point where some satellite-based carbon budgets maybe2002

feasible in the surface mixed layer. For example, we are now in a position to use2003

satellite data to improve our understanding of how organic carbon is partitioned2004

into particulate carbon (PC = PIC + POC) and dissolved carbon (DOC), how2005

particulate carbon (PC) is partitioned into organic (POC) and inorganic (PIC)2006

contributions, how POC is partitioned into algal (C-phyto) and non-algal portions,2007

and the relationship between phytoplankton carbon (C-phyto), primary production2008

(PP and net community production), which can give information on turnover2009

times for marine phytoplankton. Considering the continuous ocean-colour record2010

started in 1997, we can begin to develop an understanding how these budgets are2011

changing. This could be extremely useful for evaluating models.2012

Notwithstanding the potential and use of satellite-based carbon budgets, it is2013

clear that many carbon pools and fluxes are still not amenable from satellite re-2014

mote sensing, that satellite ocean observations are limited to the surface ocean, to2015

cloud-free conditions and low to moderate sun-zenith angles (for some systems),2016

have difficulties in coastal regions, and in spatial and temporal resolution. Thus2017

to quantify ocean carbon budgets, an integrated approach is required, combining2018

satellite data with other observations (in situ) and with models. A nice demonstra-2019

tion of this is a recent study by Nowicki et al. (2022), who assimilated satellite and2020

in-situ data into an ensemble numerical model of the ocean’s biological carbon2021

pump, to quantify global and regional carbon export and sequestration, and the2022

contributions from three key pathways to export: gravitational sinking of particles,2023

vertical migration of organisms, and physical mixing of organic material. Their2024

analysis demonstrated large regional variations in the export of organic carbon,2025

the pathways that control export, and the sequestration timescales of the export.2026
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It also suggested ocean carbon storage will weaken as the oceans stratify, and the2027

subtropical gyres expand due to anthropogenic climate change.2028

Three priorities were identified at the workshop in relation to carbon budget2029

closure (CBC). These are summarised in Table 9 and include: 1) in-situ data;2030

2) satellite algorithms, budgets and uncertainties; and 3) model and satellite2031

integration.2032

3.8.2. CBC priority 1: In-situ data2033

Challenges: As emphasised throughout previous sections, in-situ data is cen-2034

tral to algorithm development and validation of ocean carbon products. Some2035

carbon pools and fluxes are easier to measure in situ than others. As a conse-2036

quence, the quality, quantity and spatial distribution of in-situ measurements vary2037

depending on the pool or flux being studied. This makes it challenging for budget2038

computations.2039

Gaps: Very few, if any, datasets exist (or are accessible) on concurrent and co-2040

located in-situ measurements of all the key pools and fluxes required to evaluate2041

satellite or model budgets. Some remote regions that are thought to play a critical2042

role in global budgets, such as the Southern Ocean, are severely under-sampled.2043

There are gaps in some key measurements in many regions (e.g., for organic2044

carbon budgets, photosynthesis irradiance parameters, see Bouman et al., 2018;2045

Sathyendranath et al., 2020).2046

Opportunities: As technology develops, improved methods are being devel-2047

oped to measure pools and fluxes of carbon in the ocean. Some of these methods2048

(e.g., Williams et al., 2017; Estapa et al., 2017; Bresnahan et al., 2017; Sutton2049

et al., 2021; Bishop et al., 2022) have the potential to be (or have already been)2050

integrated into networks of autonomous platforms, such as gliders and BGC-Argo2051

floats. New methods are also being developed to quantify carbon pools and2052

fluxes from standard biogeochemical measurements on autonomous platforms2053

(e.g., Dall’Olmo et al., 2016; Claustre et al., 2020; Giering et al., 2020; Claustre2054

et al., 2021; Johnson and Bif, 2021). As in-situ data grow with time, it is feasible2055

to quantify properties of carbon budgets from in-situ compilations that can be2056

used to check and constrain satellite or model budgets. For example, empirical2057
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relationships between POC, C-phyto, and Chl-a (Sathyendranath et al., 2009),2058

have proven useful in model evaluations of emergent carbon budgets (de Mora2059

et al., 2016).2060

3.8.3. CBC priority 2: Satellite algorithms, budgets and uncertainties2061

Challenges: When closing the ocean carbon budget, it is critical that there is2062

coherence in the satellite data fields we input into the different satellite algorithms,2063

and that uncertainties are available for model propagation. Additionally, and as2064

identified in previous sections, some of the pools and fluxes of carbon require2065

satellite data with higher spatial, temporal and spectral resolution. There need2066

for consistency in algorithms used to quantify budgets (see Sathyendranath et al.,2067

2020), and these algorithms must respect properties of the ecosystem known from2068

in-situ data.2069

In the context of quantifying the ocean carbon budget, the pools and fluxes2070

have to fit together in a consistent way. Therefore, it is important to not only2071

consider the uncertainties in individual products, but to analyse uncertainties in2072

multiple products to identify any discrepancies. This requires that we analyse2073

each of the products in relation to all the other products, and see whether they hold2074

together in a coherent fashion. This can also help to constrain those components2075

which are impossible to observe or that are more uncertain.2076

Gaps: Many satellite carbon products lack associated estimates of uncertainty.2077

The uncertainties for individual products are also needed when combining mul-2078

tiple products to assess carbon budgets. Considering the importance of model2079

parameters in satellite algorithms, more work is needed to improve estimates of2080

uncertainties in model parameters and look towards dynamic, rather than static,2081

assignment of parameters in carbon algorithms. From an Earth’s system per-2082

spective, increasing emphasis needs to be placed on harmonising satellite carbon2083

products across different planetary domains, and evaluating the impact of using2084

different input climate data records.2085

Opportunities: With the development of consistent and stable climate data2086

records, with associated estimates of uncertainty (e.g., ESA CCI), we are now2087

in a good position to utilise coherent satellite data fields as input to ocean car-2088
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bon algorithms. The development of new satellite sensors, with higher spatial,2089

temporal and spectral resolution, will lead to improved satellite algorithms and2090

more confident carbon budgets. New approaches and statistical techniques (e.g.,2091

machine learning) are becoming available, and offer potential to get at pools and2092

fluxes of carbon from satellite that were previously not feasible to monitor from2093

space.2094

3.8.4. CBC priority 3: Model and satellite integration2095

Challenges: A major challenge in bringing satellite observations together2096

with models, is dealing with the contrasting spatial scales in the two types of2097

datasets. Quantifying carbon budgets through data integration also requires2098

appreciation of the different temporal scales that the pools and fluxes operate2099

on. This is particularly true from an Earth system approach, considering the2100

timescales of carbon cycling differ between the ocean, land and atmosphere.2101

Gaps: Successful integration of satellite carbon products with models requires2102

accurate uncertainties in the satellite observations and model simulations. These2103

are often not available. Greater emphasis is needed on model diversity, which2104

should help increase confidence in carbon budgets and improve understanding.2105

Opportunities: There are opportunities to harness new developments in data2106

assimilation to help constrain carbon budgets, through the use of new satellite2107

biological products (e.g. community structure, Ciavatta et al., 2018; Skákala et al.,2108

2018) and advancements in optical modules for autonomous platforms (Terzić2109

et al., 2019, 2021), or through combined physical and biological data assimilation2110

(Song et al., 2016; IOCCG, 2020). There is scope to harness developments2111

in machine learning to help combine data and models, for example, bridging2112

different spatial scales in the satellite and model products. Future enhancements2113

in computation power should lead to better representations of spatial scales in2114

models (e.g., sub-mesoscale processes), improving carbon budgets.2115

3.9. Common themes2116

Figure 2 shows a word cloud produced using all the priorities identified across2117

the nine themes of the workshop. It illustrates the dominant themes and subthemes2118
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emerging from all priorities identified. Commonalities among the nine themes of2119

the workshop, include:2120

• In-situ data. It is strikingly clear from this analysis the importance of2121

in-situ data, for algorithm development and validation, for extrapolation2122

of surface satellite fields to depth, for parametrisation and validation of2123

ESMs, and for constraining estimates of the carbon budget. It is critical2124

that the international community continues investing in the collection of2125

in-situ data, in better data protocols and standards, community-agreed upon2126

data structure and metadata, more intercomparison and intercalibration2127

exercises, the development of new in-situ methods for measurement of2128

carbon, and in the expanding networks of autonomous observations, that2129

have the potential to radically improve the spatial and temporal coverage of2130

in-situ data. There are clear challenges with respect to compiling large in-2131

situ datasets from different sources, using different methods and protocols,2132

for algorithm development and validation, that need to be addressed. It is2133

important that the in-situ, satellite and modelling community communicates2134

prior to collecting data, to ensure the data collected will be useful for the2135

entire community.2136

• Satellite algorithm retrievals. For all pools and fluxes of carbon, contin-2137

ued development of satellite algorithms and retrieval techniques is critical2138

to maximise the use of satellite data in carbon research. New satellites2139

are being launched in the near future, with new capabilities and improved2140

spatial, temporal and spectral resolution (see Table 10). Micro- and nano-2141

satellites (CubeSats; Schueler and Holmes, 2016; Vanhellemont, 2019)2142

have potential to be launched cheaply into low Earth orbit, in large swarms2143

improving spatial and temporal coverage. New advanced statistical methods2144

are emerging (e.g., advancements in artificial intelligence). New satellite2145

data records are appearing, that will provide the much needed coherence for2146

input to multiple satellite carbon algorithms for budget calculations. Over2147

the coming decades existing missions like Sentinel-3 OLCI, Sentinel-2 MSI2148
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and VIIRS, will provide better carbon products with real operational usage.2149

Our community needs to be positioned to harness these opportunities. Satel-2150

lite retrievals of carbon products critically rely on accurate atmospheric2151

correction, and there are challenges around developing new atmospheric2152

correction schemes for emerging sensors (Table 10). Additionally, con-2153

tinued investment is required into basic and mechanistic understanding of2154

the retrieval process, and improvements in retrievals in coastal and shelf2155

sea environments and other optically complex waters. This is crucial for2156

monitoring trends in satellite-based carbon products (e.g., Sathyendranath2157

et al., 2017b).2158

• Uncertainty in data. There is a clear requirement across all themes to2159

provide uncertainty estimates with satellite, in-situ and model products.2160

Continued investment in methods to quantify uncertainty is vital for quanti-2161

fying carbon budgets and change (IOCCG, 2019; McKinna et al., 2019).2162

• Vertical distributions. One of the major limitations of satellites, is that2163

they only view the surface layer of the ocean. Sub-surface measurements2164

are required to extrapolate the surface fields to depth. Synergy between2165

satellite surface passive fields, satellite active-based sensors (e.g. lidar)2166

that can penetrate further into the water column (Jamet et al., 2019), and2167

the expanding networks of autonomous and in-situ observations, that are2168

viewing the subsurface with ever-increasing coverage, for example, the2169

global network of BGC-Argo floats (Roemmich et al., 2019; Claustre et al.,2170

2020) and Bio-GO-SHIP (https://biogoship.org), is a clear focus for future2171

ocean carbon research.2172

• Ocean models. Many components of the ocean carbon cycle are not di-2173

rectly observable through satellite, and some are even inherently difficult2174

or expensive to measure in situ. To target these hidden pools and fluxes2175

we must turn to models. Models can also help tackle the low temporal2176

and spatial resolution of in situ data and issues around gaps in satellite2177

data. Exploring synergy between satellite observations and models is clear2178
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priority for future ocean carbon research (IOCCG, 2020). New develop-2179

ments in data assimilation may help (not only satellites, but growing data2180

sources from autonomous platforms), and integration of radiative transfer2181

into models, such that the models themselves become capable of simulat-2182

ing fields of electromagnetic energy (e.g., Jones et al., 2016; Gregg and2183

Rousseaux, 2017; Dutkiewicz et al., 2018, 2019; Terzić et al., 2019, 2021).2184

We must continue to identify processes poorly represented in models, that2185

can be subsequently improved in future model design. Observing System2186

Simulation Experiments (OSSE) can be used to evaluate the impact of2187

undersampled observing systems on obtained results, or evaluate the value2188

of new observing systems design for optimal sampling strategies.2189

• Integration of data. It is challenging to find an optimal way of combining2190

satellites, models and in-situ observations, to produce best-quality data2191

products. Integrated carbon products are required for near real-time fore-2192

casting of the biogeochemical ocean carbon cycle. Additionally, they are2193

required for regional or global impact assessments, to assess the multiple2194

stressors (e.g., temperature change, ocean acidification) acting upon the2195

marine ecosystem, and subsequent downstream effects on the carbon cycle2196

(e.g., natural food web, fisheries, etc.). Continued efforts are required to2197

develop methods to bridge the spatial and temporal scales of the different2198

datasets, and statistical methods like machine learning may help in this2199

regard.2200

• Understanding. Continued investment is required into improving our2201

fundamental understanding of the ocean carbon cycle, and on the interaction2202

between pools of carbon and light. The latter is critical for the development2203

of satellite carbon products.2204

3.10. Emerging concerns and broader thoughts2205

In addition to the common themes, during workshop discussions, other emerg-2206

ing concerns and broader thoughts materialised, including:2207
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• Bringing carbon communities together. Considering the need to take a2208

holistic, integrated approach to ocean carbon science (Aricò et al., 2021),2209

there is a strong requirement to bring different communities together work-2210

ing on different aspects of the ocean carbon cycle, that can often operate2211

in a disparate fashion, including those working in different zones of the2212

ocean (e.g., pelagic, mesopelagic, bathypelagic and abyssopelagic), on the2213

inorganic and organic sides, field and laboratory scientists, remote sensing2214

scientists and modellers. Furthermore, and taking an Earth system view,2215

this should also be extended to those working on carbon in other planetary2216

domains (Campbell et al., 2022). We need to improve our understanding of2217

the connectivity between coastal and open-ocean ecosystems, for example,2218

the potential impact of (large) rivers on oceanic carbon dynamics.2219

• The need to maximise use of limited resources. Current funding levels2220

make it challenging to support adequate monitoring of core ocean carbon2221

variables in addition to supporting innovative blue skies science. Increasing2222

overall funding and separating the funding pots for the two activities could2223

help to maximise monitoring and achieve key priorities for blue skies2224

research.2225

• Improved distribution of satellite and model carbon products. Al-2226

though satellite-based carbon products are becoming available, more em-2227

phasis is needed to integrate satellite carbon products, as well as model2228

products, into operational satellite services to ensure end-user access, and2229

make products more user friendly. This requires close dialogue with the2230

user communities.2231

• Working with satellite carbon experts in different planetary domains.2232

More emphasis should be placed on harmonising satellite carbon products2233

across different planetary domains (ocean, land, ice and air). This involves2234

working closer with scientific communities working in the different spheres2235

of the planet (Earth System approach).2236
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• Carbon and environmental footprints of research.. Our communities2237

need to start taking more responsibility to monitor and minimise the carbon2238

and environmental footprints of scientific research, and improve how this is2239

managed and controlled (e.g., Achten et al., 2013; Shutler, 2020). Greater2240

stewardship is needed to document and track the carbon and environmental2241

footprints of researchers, ideally within a transparent and traceable frame-2242

work (e.g., Mariette et al., 2021). The benefits of the priorities identified2243

(e.g., launching of new satellites and collection of more in-situ measure-2244

ments etc.) need to be balanced against their environmental footprint, with2245

a view to identify means by which it can be reduced and mitigated.2246

• Carbon and environmental footprints of space technology. There is an2247

increasing number of satellites being launched into space. Although much2248

of this growth is for internet services, Earth Observation satellites are also2249

increasing in numbers, with increasing amounts of space junk. This raises2250

questions on the environmental impacts of satellites and space technologies2251

more generally throughout their complete lifetimes that have previously not2252

been a concern (from construction, to rocket launch and being placed into2253

orbit and use, de-orbiting and removal).2254

• Use of satellite products for informing ocean carbon dioxide removal2255

(CDR) studies. Satellites can play a role in future monitoring of potential2256

implementations of CDR, for understanding the consequences that some2257

of these proposed mechanism would have on the marine ecosystem (Boyd2258

et al., 2022; National Academies of Sciences, Engineering, and Medicine,2259

2022).2260

• Need to consider how satellites can be used to help monitor cycles of2261

other important climatically-relevant compounds and elements. For2262

example, methane (CH4) emissions have contributed almost one quarter of2263

the cumulative radiative forcings for CO2, CH4, and N2O (nitrous oxide)2264

combined since 1750 (Etminan et al., 2016), and absorbs thermal infrared2265

radiation much more efficiently than CO2.2266
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• Open Science. It is essential that our community follows an open science2267

approach, promoting data sharing and knowledge transfer, and committing2268

to FAIR principles (https://www.go-fair.org/fair-principles/). Supporting2269

open-access repositories for publications, data and code, and openly avail-2270

able education resources, for the next generations of scientists.2271

• Promote diversity and inclusivity. Geosciences are one of the least di-2272

verse branches of STEM. And while it was positive to see the high gender2273

diversity at this meeting (Figure 1), more is needed to promote the position2274

of the underrepresented minorities in our field. System wide changes need2275

to be implemented, where diversity, inclusion, cohesion, and equality across2276

the ocean research (with special emphasis on field safety) are a priority.2277

4. Summary2278

We organised a workshop on the topic of ocean carbon from space with the2279

aim to produce a collective view of status of the field and to define priorities2280

for the next decade. Leading experts were assembled from around the world,2281

including those working with remote-sensing data, with field data and with2282

models. Inorganic and organic pools of carbon (in dissolved and particulate2283

form) were targeted, as well fluxes between pools and at interfaces. Cross-2284

cutting activities were also discussed, including blue carbon, extreme events and2285

carbon budgets. Common priorities should focus on improvements in: in-situ2286

observations, satellite algorithm retrievals, uncertainty quantifying, understanding2287

of vertical distributions, collaboration with modellers, ways to bridge spatial and2288

temporal scales of the different data sources, fundamental understanding of the2289

ocean carbon cycle, and on carbon and light interactions. Priorities were also2290

reported for the specific pools and fluxes studied, and we highlight emerging2291

concerns that arose during discussions, around the carbon footprint of research2292

and space technology, the role of satellites in CDR approaches, to consider how2293

satellites can be used to help monitor the cycles of other climatically-relevant2294

compounds and elements, the need to promote diversity and inclusivity, bringing2295
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communities working on different aspects of ocean carbon together, and open2296

science.2297
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Table 1: Overview of the themes of the paper and guide to navigate the manuscript.

Theme Acronym Short description Flux/Stock Global Size/Rate Section Table
Primary Pro-
duction

PP Conversion of inorganic car-
bon (DIC) to organic carbon
(POC) through the process of
photosynthesis.

Flux ∼50 Gt C yr−1 3.1 2

Particulate
Organic Carbon

POC Organic carbon that is above
>0.2 µm in diameter.

Stock 2.3↔4.0 Gt C 3.2 3

Phytoplankton
Carbon

C-phyto Organic carbon contained in
phytoplankton

Stock 0.78↔1.0 Gt C 3.3 4

Dissolved
Organic Carbon

DOC Organic carbon that is <

0.2 µm in diameter.
Stock ∼662 Gt C 3.4 5

Inorganic car-
bon and fluxes
at the ocean
interface

IC Consisting of dissolved in-
organic carbon (DIC, IC <

0.2 µm in diameter), partic-
ulate inorganic carbon (PIC,
IC > 0.2 µm in diameter), and
air-sea flux of IC between
ocean and atmosphere.

Stock
(DIC,PIC),
Flux (air-
sea IC
exchange)

DIC
(∼38,000 Gt C),
PIC (∼0.03 Gt C),
air-to-sea net
flux of anthro-
pogenic CO2

(∼3.0 Gt C y−1)

3.5 6

Blue Carbon BC Carbon contained in tidal
marshes, mangroves,
macroalgae and seagrass
beds.

Stock 10↔24 Gt C 3.6 7

Extreme Events EE Events that occur in the upper
or lower end of the range of
historical measurements.

– – 3.7 8

Carbon Budget
Closure

CBC How the stock of carbon in
the ocean and elsewhere on
the planet is partitioned.

– ∼650,000,000
Gt C (on Earth)

3.8 9

4335
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Table 2: Priorities, challenges, gaps and opportunities for satellite estimates of primary production.

Priority Challenges Gaps Opportunities
(1)
Parametri-
sation of
satellite algo-
rithms using
in-situ data

• Accurate representation of the
spatial and temporal variability
of model parameters.

• Continued financial support for
in-situ observations.

• Standard conversion factors and
protocols, including those for an-
cillary measurements.

• Satellite primary production is
often estimated from an instant
snapshot in time, meaning the
diurnal variability in parameters
and variables must be assumed
(modelled).

• Lack of continuous measure-
ments.

• Better coordination at interna-
tional level required.

• Use of novel in-situ platforms,
use of active fluorescence-based
methods and oxygen optode sen-
sors.

• Synergy across in-situ data
sources (multiplatform sensors).

• Use of artificial intelligence tech-
niques for mapping model pa-
rameters.

• Opportunities to exploit geosta-
tionary platforms to resolve di-
urnal variability in light and
biomass.

• Formulate priorities for fund-
ing (long-term time series, novel
measurements).

(2) Un-
certainty
estimation
and valida-
tion

• Validation of satellite-based pri-
mary production estimates is
challenging (i.e., lack of inde-
pendent in-situ data, differences
in scale between in-situ and
model data, differences in meth-
ods etc.)

• Uncertainty estimates satellite-
based products are not readily
provided.

• Lack of in-situ data for valida-
tion.

• Gaps in our understanding of un-
certainty in key input variables
and parameters to PP models.

• Data gaps in satellite observa-
tions, e.g., cloudy pixels, cover-
age in polar regions.

• Benefit from enhanced computa-
tional capacity to run models for
uncertainty estimation.

• Use of emerging (hyperspectral,
geostationary, lidar) sensors.

• Continuous validation is crucial,
opportunities with autonomous
platforms.

(3) Link-
ing surface
satellite mea-
surements
to vertical
distribution

• Resolve vertical structure of pri-
mary production, Chl-a, and
PAR in satellite-based primary
production models.

• High spatial and temporal in-situ
data

• Need for better physical prod-
ucts, such as mixed-layer depth,
including uncertainties.

• Improve (basic) understanding
of vertical structure.

• Benefit from use of novel in-situ
platforms.

• Benefit from future satellite lidar
systems.

Continued on the next page.
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Table 2. Priorities, challenges, gaps and opportunities for satellite estimates of primary production.
(continued from previous page).

Priority Challenges Gaps Opportunities
(4) Trends • Difficulty in assessing direction

of change in trends of pri-
mary production, estimates dif-
fer widely.

• Deal with noise in non-linear
systems (for example, to assess
the impact of extreme events).

• Uncertainty estimates satellite-
based products are not provided.

• Length of satellite record not suf-
ficient for climate change stud-
ies.

• Need for consistent and continu-
ous satellite records for climate
research.

• Assimilation of satellite data
into models.

(5) Under-
standing

• Better understand relationship
between primary production,
community structure and
environment.

• Understand feedbacks between
physics and biology over a broad
range of scales, and the implica-
tions for carbon cycling.

• Understand the fate of primary
production, i.e. secondary and
export production.

• Better understand the interac-
tions between PP in different
components of the Earth Sys-
tem.

• Improved quantification of new
production and net community
production from space.

• Need for higher spatial and
temporal resolution products to
study diurnal variability.

• Include inland and coastal wa-
ters.

• Gaps in satellite information on
data sets relevant to photochemi-
cal reactions.

• Unifying the integration of pri-
mary production across inter-
faces, i.e., bringing together pri-
mary production on land and in
the ocean.

• Regional models/algorithms
with aim to merge/nest models
for larger scale estimates

• Meet challenges of the UN
Ocean Decade.

• Harness novel algorithms and
satellites (hyperspectral, lidar
and geostationary).

• Harness satellite instruments
covering the UV spectral range
to give insight into photodegra-
dation processes.
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Table 3: Priorities, challenges, gaps and opportunities for satellite Particulate Organic Carbon
(POC) estimates

Priority Challenges Gaps Opportunities
(1) In situ
measurement
methodology

• Inclusion of particles of all sizes
to determine total POC.

• Quantifying contributions of
differently-sized particles and
different particle types.

• Dealing with biases due to DOC
in filters.

• Submicrometer particles missed
and rare large particles poten-
tially underrepresented in the
standard filtration method.

• No capability to measure contri-
butions of differently-sized parti-
cles and different particle types.

• A lack of a certified reference
material for POC.

• Advance and standardise meth-
ods for improved measurement
of total POC.

• Develop measurement capabili-
ties combining particle sizing,
particle identification, and parti-
cle optical properties to address
contributions of different parti-
cle sizes and types

(2) In situ
data compila-
tion

• Quality control and consistency
across diverse datasets.

• Limitations of satellite-in-situ
data match-ups, e.g., spatio-
temporal scale mismatch, avail-
ability of match-ups in various
environments.

• Limitations in documentation of
methods in historical datasets.

• Best-practice guidelines for data
quality control and synthesis ef-
forts.

• Undersampled environments.

• Improve and standardise best
practices for documentation,
quality control, sharing, and sub-
mission of data into permanent
archives.

• Collection of high-quality data
along the continuum of diverse
environments.

(3) Satellite
algorithm re-
trievals

• Unified algorithms for reliable
retrievals along the continuum
of diverse aquatic environments
ranging from open ocean to
coastal and inland water bodies.

• Global algorithms applied to en-
vironmental conditions outside
the intended scope.

• Satellite inter-mission consis-
tency.

• Atmospheric-correction tailored
to a new generation of ocean
colour sensors (e.g. geostation-
ary and hyperspectral).

• Mechanistically-based flags as-
sociated with optical water types
to ensure the application of algo-
rithms (e.g., the current global al-
gorithms) according to their in-
tended use.

• Advanced algorithms (e.g.,
adaptive algorithms based on
mechanistic principles) to en-
able reliable retrievals across
diverse environments including
the optically-complex coastal
water bodies.

• Recent development of a new
suite of empirical satellite
sensor-specific global POC algo-
rithms provides the opportunity
for routine production of refined
global POC product.

• Development of advanced algo-
rithms that incorporate mecha-
nistic principles for applications
across the continuum of diverse
aquatic environments.

• Use of satellite geostationary
and hyperspectral data in combi-
nation with in-situ data

Continued on the next page.
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Table 3. Priorities, challenges, gaps and opportunities for satellite Particulate Organic Carbon (POC)
estimates. (continued from previous page).

Priority Challenges Gaps Opportunities
(4) Partition-
ing into com-
ponents

• Partitioning of POC into particle
size fractions and biogeochemi-
cally important components.

• Characterize the PSD of both to-
tal bulk particle assemblages and
separately the various functional
fractions.

• Address coastal and other opti-
cally complex water bodies that
may have both autochthonous
and allochthonous contributions
to POC, as opposed to domi-
nance of autochthonous POC in
the open ocean - assess the need
to separate these two pools.

• Ability to reliably measure in
situ various fractions is limited,
e.g., separate living vs. non-
living POC.

• Insufficient global PSD measure-
ments and lack of comprehen-
sive global PSD data compila-
tions.

• A dearth of concurrent data on
POC, PSD and carbon data on
the components that make POC.

• Insufficient knowledge of Inher-
ent Optical properties (IOPs)
(e.g., the volume scattering func-
tion (VSF)) for optics-based par-
titioning of POC.

• Support basic research on parti-
cle sizing, particle identification,
and particle optical properties in-
cluding polarization properties.

• Development of light-scattering
polarization sensors for deploy-
ment on autonomous in-situ
platforms (in combination with
other IOP sensors such as beam
attenuation and backscattering).

• Emerging techniques to separate
living and non-living POC.

• Support PSD measurements as
part of a suite of basic required
variables for ocean biogeochem-
istry studies and remote sensing.

• Opportunities to harness
satellite-based approaches to
monitoring zooplankton, for
quantifying their contribution to
POC.

Continued on the next page.
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Table 3. Priorities, challenges, gaps and opportunities for satellite Particulate Organic Carbon (POC)
estimates. (continued from previous page).

Priority Challenges Gaps Opportunities
(5) Vertical
profiles

• Reconstructing vertical profiles
using data from space-borne, air-
borne, and in-situ sensors.

• Determining relationship(s) be-
tween remotely-sensed variables
and characteristics of POC ver-
tical profile, e.g., weighted aver-
age.

• Relationships between optical
variables and POC (e.g., from
sensors on autonomous in-situ
platforms).

• Uneven distribution of in-situ
profiles of POC globally, with
some areas severely undersam-
pled.

• Development of POC algorithms
for in-situ optical data (e.g.,
BGC-Argo) along with improve-
ments of optical sensor technol-
ogy (e.g., polarized scattering
sensors for BGC-Argo).

• Use multiple data (satellite,
BGC-Argo) and model streams
(including CMIP6 ocean bgc
models) to reconstruct 3D
and 4D POC in the ocean via
statistical and data assimilation
techniques.

• Advance basic research to de-
termine relationships between
remote-sensing reflectance and
other optical variables and ver-
tical profiles of POC character-
istics, including PSD and func-
tional fractions.

• Harness lidar-based remote sens-
ing that can penetrate further
into the water column than pas-
sive ocean colour remote sens-
ing.

(6) Biogeo-
chemical
processes
and the
carbon pump

• Understand the fate of POC and
its fractions globally, e.g., the
role of POC in the biological
pump.

• Interannual POC export variabil-
ity in empirical and mechanistic
models.

• Fate of POC in shallow environ-
ments.

• Role of horizontal advection.

• Widespread use of autonomous
sensors and emerging observa-
tion techniques (e.g., “optical
sediment traps” on BGC-Argo
floats).

• Data-driven estimates of vertical
POC fluxes.

• Constraining prognostic ocean
BGC models using observations
from remote and in-situ au-
tonomous sensors.
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Table 4: Priorities, challenges, gaps and opportunities for satellite phytoplankton carbon (C-phyto)
estimates.

Priority Challenges Gaps Opportunities
(1) In-situ
data

• Extremely difficult to measure C-
phyo in situ.

• Very few observations from the
field on photoacclimation param-
eters and their variability.

• Challenges around standardiza-
tion of phytoplankton carbon
data submission using emerging
in-situ techniques.

• Gaps in accurate in situ C-phyto
data.

• Gaps in consistent C-phyto sur-
face time-series data sets.

• Gaps in photo-acclimation pa-
rameters.

• The enlargement and explo-
ration of data analysis of in situ
supersites.

• Accuracy of optical quantities
used as input of C-phyto algo-
rithms can be improved by em-
powering validation through au-
tonomous mobile platforms such
as BGC-Argo profiling floats
and Lagrangian drifters.

(2) Satellite
algorithm re-
trievals

• Separating the contributions of
living and non-living particles to
the particle backscattering coeffi-
cient.

• Understanding the influence of
phytoplankton composition and
photoacclimation on the rela-
tionship between Chl-a, particle
backscatter and C-phyto.

• A gap in our mechanistic under-
standing of how optical proper-
ties and particle types link to C-
phyto.

• Uncertainties infrequently re-
ported with satellite C-phyto
products.

• Harness long time-series satel-
lite products.

• Explore the combined use of
satellite data with ecosystem
modelling to improve C-phyto
products.

• Combining models of photoac-
climation with size-based ap-
proaches and models of primary
production, such that the carbon
pools and fluxes are produced in
a consistent manner.

(3) Vertical
structure

• Challenging to collect, aggre-
gate and produce an in-situ
dataset that is representative of
entire euphotic depth and at
global scale.

• Biases towards in-situ C-phyto
data collected at surface depths.

• Lack of methods for extrapolat-
ing the surface satellite C-phyto
products down through the en-
tire euphotic zone.

• Use autonomous platforms such
as BGC-Argo floats and moor-
ings with satellite data and mod-
els to reconstruct the 4D views
of C-phyto, from an Eulerian
and Lagrangian perspective.
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Table 5: Priorities, challenges, gaps and opportunities for satellite detection of Dissolved Organic
Carbon (DOC).

Priority Challenges Gaps Opportunities
(1) Spatial
and temporal
coverage of
the coastal
ocean

• Quantifying DOC stocks and
fluxes in coastal waters require
satellites with high temporal cov-
erage.

• Viewing high latitudes regions
from space in winter months.

• Estimates of DOC stocks and
fluxes in coastal environments
are severely limited by the tem-
poral coverage of existing ocean
color satellites.

• With the advent of geostationary
ocean-colour satellites, capable
of imaging multiple times daily,
there are exciting opportunities
to address these challenges and
gaps at regional scales.

(2) Under-
standing and
constraining
the relation-
ship between
CDOM and
DOC

• Improved performance of satel-
lite CDOM absorption retrievals
is required.

• The relationships between DOC
and CDOM absorption tends
to be variable seasonally and
across coastal systems.

• CDOM and DOC are largely de-
coupled in the open ocean.

• High sensitivity to atmospheric
correction (especially ambiguity
with effects of Rayleigh scatter-
ing).

• Gaps in our understanding of the
relationship between DOC and
CDOM absorption.

• There is a lack satellite UV and
hyperspectral data for resolving
DOC and its composition.

• Reliable atmosphere-correction
is needed for UV and shortwave
visible wavelengths.

• Utilise the spectral slope of
CDOM absorption, S275−295, to
constrain the variability between
CDOM and DOC.

• Develop mechanistic models of
the processes regulating the re-
lationship between CDOM and
DOC, by integrating new insight
on the effects of photobleaching.

• Harness opportunities to acquire
high-quality field measurements
of DOC and CDOM absorption
across different seasons and ma-
rine environments.

• Emerging UV and hyperspectral
satellites will open opportunities
for CDOM and DOC retrievals.

• Harness optical water type
frameworks for algorithms
selection and merging for better
separation of NAP-CDOM
effects.

Continued on the next page.
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Table 5. Priorities, challenges, gaps and opportunities for satellite detection of Dissolved Organic Carbon
(DOC). (continued from previous page).

Priority Challenges Gaps Opportunities
(3) Identi-
fication of
sources and
reactivity

• Challenging to identify specific
pools of DOC of different
sources and reactivity.

• Few studies assessing whether
the DOM fluoresced signal can
be detected from remote-sensing
reflectance.

• Whether the fluorescence of
DOC and CDOM can have a
measurable influence on remote-
sensing reflectance.

• Opportunities with hyperspec-
tral sensors that provide im-
proved signal-to-noise ratio, at-
mospheric corrections, as well
as enhanced spectral informa-
tion in the UV-visible range

• Opportunities with active
remote-sensing approaches
based on laser-induced fluores-
cence.

(4) Vertical
measure-
ments

• Remote sensing of CDOM and
DOC is limited to surface mea-
surements.

• Approaches that extrapolate sur-
face DOC and CDOM to depth
require extensive in-situ datasets
(vertical profiles). Gaps exist for
many regions and seasons

• Acquiring in-situ measurements
from autonomous platforms like
BGC-Argo equipped with DOM-
fluorescence sensors and radiom-
etry.

• Opportunities with UV-lidar-
based techniques to retrieve
sub-surface information about
CDOM in the ocean.

• Opportunities to harness mod-
elling approaches (physical and
BGC modelling) to improve es-
timation of DOC dynamics at
depth.

151



Table 6: Priorities, challenges, gaps and opportunities for satellite detection of inorganic carbon
(IC) and fluxes at the ocean interface.

Priority Challenges Gaps Opportunities

(1) In-situ
data

• Strong reliance on in-situ data,
considering many components
of inorganic carbon are not di-
rectly observable from space.

• In-situ data of a much coarser
spatial and temporal resolution
when compared with satellite
data.

• In-situ data products are heavily
extrapolated.

• Challenging to integrate in-situ
datasets without community con-
sensus on best practices and ref-
erence materials.

• Better spatial and temporal cov-
erage of field observations re-
quired, not only at the surface
but also the full water column.

• Limited in-situ data time-series
stations in key locations.

• Opportunities to improve the
spatial and temporal resolu-
tion of in-situ data through
autonomous platforms.

• Opportunities to extend recent
efforts to develop Fiducial Ref-
erence Measurements (FRM) to
inorganic carbon.

(2) Satellite
retrievals and
mapping un-
certainty

• Satellite inorganic carbon esti-
mates in optically-complex wa-
ter are challenging.

• Challenging to retain the theoret-
ical understanding of satellite al-
gorithms, while harnessing new
powerful statistical approaches
(e.g. AI).

• Lack of pixel-by-pixel uncer-
tainty estimates in the satellite
inorganic products.

• Lack of coincident in-situ obser-
vations of PIC, other highly scat-
tering materials, and inherent
optical properties, in optically-
complex waters.

• New satellite sensors, with im-
proved spatial, spectral and tem-
poral resolution, may lead to im-
provements in IC satellite prod-
ucts.

• Opportunities to harness and
build on recent techniques used
to map uncertainty in satellite or-
ganic carbon products.

Continued on the next page.
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Table 6. Priorities, challenges, gaps and opportunities for satellite detection of inorganic carbon (IC) and
fluxes at the ocean interface. (continued from previous page).

Priority Challenges Gaps Opportunities
(3) Models
and data
integration

• Bridging the differences (e.g.,
scales) in data products and mod-
els.

• In-situ, data-driven products are
sensitive to choice of extrapola-
tion method.

• Closer collaboration between
data generators and modellers is
needed.

• Opportunities to harness im-
proved computer processing
power, and the development of
new statistical tools.

• Opportunities to improve model
products by reconciling model
carbon budgets with those from
satellite and in-situ products.

• Opportunities to harness an in-
creasing range of data sources to
improve data products, for exam-
ple, through data assimilation re-
analysis.

• Opportunity for routine integra-
tion of in-situ, model, and satel-
lite observations to enable rou-
tine assessment of the surface
water pCO2, air-sea exchange
and the net integrated air-sea
flux (or ocean sink) of carbon.

Continued on the next page.
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Table 6. Priorities, challenges, gaps and opportunities for satellite detection of inorganic carbon (IC) and
fluxes at the ocean interface. (continued from previous page).

Priority Challenges Gaps Opportunities
(4) Mech-
anistic
understand-
ing of gas
transfer

• Mechanistic understanding of
gas transfer is challenged by our
ability to measure and quantify
key processes.

• Large uncertainties surrounding
the influence of near surface tem-
perature gradients on gas trans-
fer.

• Large uncertainty surrounding
the importance of bubbles for air-
sea CO2 fluxes.

• Carbon dynamics and air-sea
CO2 fluxes in mixed sea ice re-
gions are poorly understood.

• Opportunity to establish FRM
status and agree best practice
for eddy covariance air-sea CO2

fluxes.

• Opportunities to exploit state-of-
the-art techniques on novel plat-
forms to improve understanding
of air-sea CO2 fluxes in different
environments such as mixed sea
ice regions.

• Opportunity to quantify the mag-
nitude of near surface temper-
ature gradients on air-sea CO2

fluxes.

• Opportunity to develop/improve
parameterisations that use sea
surface roughness to estimate
air-sea CO2 transfer.
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Table 7: Priorities, challenges, gaps and opportunities for satellite detection of Blue Carbon (BC).

Priority Challenges Gaps Opportunities
(1) Satellite
sensors

• Requirement for monitoring at
high temporal (hourly) and spa-
tial (tidal) scales.

• A lack of long-term satellite
datasets for change detection in
many BC ecosystems.

• New hyperspectral observations
will lead to improved BC detec-
tion.

• High spatial resolution (3-5 m)
imagery becoming available
from a constellation of commer-
cial satellite sensors.

• Geostationary satellite instru-
ments will meet the require-
ments for high temporal (hourly)
BC monitoring.

• Scope to build on efforts to de-
velop satellite climate records
with a focus on BC.

(2) Al-
gorithms,
retrievals
and model
integration

• Many BC approaches are re-
gional, difficult to go to global
scales.

• Uncertainty estimation for BC
fluxes challenging.

• Difficult to monitor the dynam-
ics of sediment carbon remotely.

• Dealing with sub-pixel variabil-
ity of macroalgae when using
courser resolution satellite data.

• Limited availability of in-situ
data for development and valida-
tion of BC remote sensing ap-
proaches.

• Lack of BC ecosystem models
limits our ability to quantify full
BC carbon budgets.

• Harness computation power and
statistical analysis of big data
(e.g., techniques like machine
learning).

• Fusion of hyper-spectral optical
and SAR data provides a promis-
ing approach for characteriza-
tion of tidal wetlands.

• New in-situ monitoring tech-
niques (e.g., drones) are becom-
ing useful to bridge the scales be-
tween satellites and in-situ obser-
vations.

(3) Data ac-
cess and ac-
counting

• Existing products and ap-
proaches are not easily accessi-
ble to non-expert users.

• Challenges to ensure cost-
effective monitoring using
commercial satellites.

• Lack of products suited to
project development and carbon
accounting.

• Products needed at global scales,
at higher spatial and temporal
resolution.

• Increasing efforts to develop BC
habitat mapping portals that are
user friendly.

• Opportunities to link OMICS
with satellite data.
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Table 8: Priorities, challenges, gaps and opportunities for satellite detection of Extreme Events
(EE) and their impacts on the ocean carbon cycle.

Priority Challenges Gaps Opportunities
(1) In-situ
data

• Some EEs are extremely chal-
lenging and dangerous to moni-
tor in-situ using ship-based tech-
niques.

• Major gaps in availability of in-
situ observations of EE events.

• Gaps are greater in subsurface
waters.

• Long time-series in-situ observa-
tions needed for baselines.

• To harness the expanding net-
work of autonomous in-situ plat-
forms.

(2) Satellite
sensing tech-
nology

• Some EEs require high tempo-
ral and spatial coverage, which
challenges current remote sens-
ing systems.

• Dealing with cloud coverage dur-
ing tropical cyclones.

• Satellite retrievals in the pres-
ence of complex aerosols from
volcanic eruptions.

• High temporal and spatial reso-
lution data is required for moni-
toring some EE events.

• Gaps in satellite data for some
EE events (e.g., clouds).

• Gaps in knowledge on the op-
tical properties of aerosols for
some events.

• Long time-series remote sensing
data is needed for baselines.

• Synergistic use of different long-
term high-frequency and high-
resolution remote sensing data.

• Harness emerging sensors with
increased spectral, spatial and
temporal resolution.

• Opportunities to derive satellite-
based indicators of EE’s for de-
termining good environmental
status.

(3) Model
synergy and
transdis-
ciplinary
research

• Need to utalise ESMs for under-
standing EEs and projecting fu-
ture scenarios.

• Need to bring communities from
multiple fields together.

• Higher resolution ESMs with im-
proved representation of marine
ecosystems.

• Investment in transdisciplinary
research related to EEs.

• Harness enhancements in com-
putation power and improve-
ments in ESMs and data assim-
ilation techniques.

• Remove knowledge barriers
by promoting and open data
approach cross-disciplinary
research and data access.
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Table 9: Priorities, challenges, gaps and opportunities for using satellite data for Carbon Budget
Closure (CBC).

Priority Challenges Gaps Opportunities
(1) In-situ
data

• Quality, quantity and spatial
distribution of in-situ measure-
ments varies depending on the
pool or flux being studied, and
depends on the measurement
platform used.

• Very few datasets exist on con-
current and co-located in-situ
measurements of all the key
pools and fluxes needed to evalu-
ate model budgets.

• Remote regions that play a key
role in global budgets (e.g.,
Southern Ocean) are severely
under-sampled.

• Gaps in key measurements in
many regions (e.g., photosynthe-
sis irradiance parameters, for or-
ganic carbon budgeting).

• New in-situ technologies be-
ing integrated into networks of
autonomous platforms, for im-
proved carbon measurements.

• Methods being developed to
quantity carbon pools and fluxes
from routine optical autonomous
observations.

• Properties of carbon budgets
can be interrogated using in-situ
compilations to check and con-
strain satellite or model budgets.

(2) Satellite
algorithms,
budgets and
uncertainties

• There need to be coherence in
the input satellite data fields for
different satellite carbon algo-
rithms when computing budgets.

• Some of the pools and fluxes
of carbon require satellite data
with higher spatial, temporal and
spectral resolution.

• There needs to be consistency in
algorithms used to quantify bud-
gets, and these algorithms must
respect properties of the ecosys-
tem we know from in-situ data.

• Uncertainties in individual prod-
ucts are essential to analyse mul-
tiple products to compute the
budgets.

• Products must be evaluated in re-
lation to other products, to see
whether they hold together in a
coherent fashion.

• Many satellite carbon products
lack associated estimates of un-
certainty.

• More work is needed to im-
prove estimates of uncertainties
in model parameters.

• More efforts needed towards dy-
namic, rather than static, assign-
ment of parameters in carbon al-
gorithms.

• Increasing emphasis needs to be
placed on harmonising satellite
carbon products across different
planetary domains (ocean, land,
ice and air).

• Opportunities to harness climate
data records.

• Opportunities to harness emerg-
ing sensors with increased spec-
tral, spatial and temporal resolu-
tion.

• New approaches and statistical
techniques offer potential to get
at pools and fluxes of carbon
from satellite that were previ-
ously not feasible.

Continued on the next page.
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Table 9. Priorities, challenges, gaps and opportunities for using satellite data for Carbon Budget Closure
(CBC). (continued from previous page).

Priority Challenges Gaps Opportunities
(3) Model
and satellite
integration

• Challenges dealing with the con-
trasting spatial scales in models
and satellite observations.

• Quantifying carbon budgets also
requires appreciation of the dif-
ferent temporal scales that the
pools and fluxes operate on.

• Uncertainties in the satellite ob-
servations and model simula-
tions needed.

• Greater emphasise should be
placed on promoting model di-
versity.

• Opportunities to harness new de-
velopments in data assimilation
to help constrain carbon budgets,
such as combined physical and
biological data assimilation.

• Scope to harness developments
in machine learning to help com-
bine data and models.

• Future enhancements in com-
putation power should lead to
better representations of spatial
scales in models.
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Table 10: A selection of upcoming satellite sensors with applications in ocean carbon research
and monitoring.

Sensor Description Reference
Plankton, Aerosol, Cloud,
ocean Ecosystem (PACE)

PACE will have a hyperspectral Ocean
Color Instrument (OCI), measuring in the
ultraviolet (UV), visible, near infrared, and
several shortwave infrared bands. It will
also contain two multi-wavelength, multi-
angle imaging polarimeters for improved
quantification of atmospheric aerosols and
ocean particles (Remer et al., 2019a,b).
PACE is scheduled to launch in 2024.

https://pace.gsfc.nasa.gov

Geosynchronous Littoral
Imaging and Monitoring
Radiometer (GLIMR)

GLIMR is a geostationary and hyperspec-
tral ocean colour satellite that will observe
coastal oceans in the Gulf of Mexico, por-
tions of the south-eastern US coastline, and
the Amazon River plume. It will provide
multiple observations (hourly), at around
300 m resolution across the UV-NIR range
(340 -1040 nm). GLIMR is expected to be
launched in 2027.

https://eospso.nasa.gov/

missions/geosynchronous-
littoral-imaging-and-
monitoring-radiometer-evi-
5

Environmental Mapping and
Analysis Program (EnMAP)

EnMAP is a German hyperspectral satellite
mission measuring at high spatial resolution
(30 m) from 420-1000 nm in the visible and
near-infrared, and from 900 nm to 2450 nm
in the shortwave infrared. It aims to monitor
and characterise Earth’s environment on a
global scale. It was launched in April 2022.

https://www.enmap.org

FLuorescence EXplorer
(FLEX)

FLEX is a mission designed to accurately
measure fluorescence, and provide global
maps of vegetation fluorescence that reflect
photosynthetic activity and plant health and
stress, which is important for understand-
ing of the global carbon cycle. FLEX is
expected to be launched in 2025.

https://earth.esa.int/
eogateway/missions/flex

Continued on the next page.
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Table 10: A selection of upcoming satellite sensors with applications in ocean carbon research
and monitoring.

Sensor Description Reference
Sentinel-4 (S-4) S4 mission consists of an Ultraviolet-

Visible-Near-Infrared (UVN) light imag-
ing spectrometer instrument embarked to
be onboard the Meteosat Third Generation
Sounder (MTG-S) satellite. It will provide
geostationary data over European waters
and planned to be launched in 2023.

https://sentinel.esa.int/web/

sentinel/missions/sentinel-4

Sentinel-5 (S-5) S5 mission consists of a hyperspectral spec-
trometer system operating in the UV, visible
and shortwave-infrared range. Though fo-
cused primarily on retrieving information
on the composition of the atmosphere, it can
retrieve information on ocean colour. Pre-
liminary applications using the precursor
mission (S-5p, launched in October 2017),
has demonstrated retrieval of diffuse attenu-
ation (Kd) in the blue and UV regions. Ow-
ing to the hyperspectral nature of the instru-
ment, it also has applications in deriving
information on the composition of the phy-
toplankton in the ocean (e.g., Bracher et al.,
2017).

https://sentinel.esa.int/web/

sentinel/missions/sentinel-5

Copernicus Hyperspectral
Imaging Mission for the
Environment (CHIME)

CHIME will provide routine hyperspectral
observations from the visible to shortwave
infrared. The mission will complement
Copernicus Sentinel-2 satellite for high res-
olution optical mapping. Planned to be
launched in the second half of this decade.

https://www.esa.int/ESA_
Multimedia/Images/2020/

11/CHIME

Continued on the next page.
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Table 10: A selection of upcoming satellite sensors with applications in ocean carbon research
and monitoring.

Sensor Description Reference
Earth Cloud, Aerosol and
Radiation Explorer (Earth-
CARE)

EarthCARE will contain an atmospheric li-
dar, cloud profiling radar, a multi-spectral
imager, and a broad-band radiometer, with
the objective to allow scientists to study the
relationship of clouds, aerosols, oceans and
radiation. It is planned for launch in 2023

https://earth.esa.int/
eogateway/missions/
earthcare

Surface Water and Ocean To-
pography Mission (SWOT)

SWOT will contain a wide-swath altimeter
that will collect data on ocean heights to
study currents and eddies up to five times
smaller than have been previously been de-
tectable. It is planned for launch in Novem-
ber 2022

https://swot.jpl.nasa.gov/

mission/overview/

Satélite de Aplicaciones
Basadas en la Informa-
ción Ambiental del Mar
(SABIA-Mar)

SABIA-Mar was conceived to observe wa-
ter color in the open ocean (global sce-
nario, 800 m resolution) and coastal ar-
eas of South America (regional scenario,
200 m resolution) and provide information
about primary productivity, carbon cycle,
marine habitats and biodiversity, fisheries
resources, water quality, coastal hazards,
and land cover/land use. The satellite will
carry two push-broom radiometers covering
a 1496 km swath and measuring in 13 spec-
tral bands from 412 to 1600 nm. SABIA-
Mar is scheduled to be launched in 2024.

https://www.argentina.gob.
ar/ciencia/conae/misiones-
espaciales/sabia-mar

Continued on the next page.
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Table 10: A selection of upcoming satellite sensors with applications in ocean carbon research
and monitoring.

Sensor Description Reference
Surface Biology and Geol-
ogy (SBG)

SGB is being designed to address, via visi-
ble to shortwave imaging spectroscopy, ter-
restrial and aquatic ecosystems and other el-
ements of biodiversity, geology, volcanoes,
the water cycle, and applied topics of social
benefit. In the current architecture consid-
ered, the instrument payload will consist
of a hyperspectral imager measuring at 30-
45 m resolution in >200 spectral bands from
380 to 2250 nm and a thermal infrared im-
ager measuring at 40-60 m resolution in >5
spectral bands from 3 to 5 and 8 to 12 mi-
crons, with revisit of 2-16 and 1-7 days,
respectively. Launch is scheduled for 2026.

https://sbg.jpl.nasa.gov

MetOp-SG Multi-Viewing
Multi-Channel Multi-
Polarisation Imaging (3MI)
instrument

3MI is a passive optical radiometer with
large swath (2200 km) dedicated primarily
to aerosol characterization for applications
in climate monitoring, atmospheric chem-
istry, and numerical weather prediction, but
with ocean color capability. It will provide
multi-spectral (12 spectral bands from 410
to 2130 nm), multi-polarization (+60 deg.,
0 deg., and -0 deg.), and multi-angular (14
directions) views of a Earth target at 4 km
resolution. The first MetOp-SG A-series
satellite carrying 3MI will be launched in
2024, the second in 2031, and the third in
2038.

https://earth.esa.int/
web/eoportal/satellite-
missions/m/metop-sg
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Figure 1: (a) Number of documents identified (green circles) in chronological order from a Scopus
search (https://www.scopus.com/) using the terms "Ocean carbon satellite" (using All fields). Blue
line represents an exponential fit to the increase in the number of documents over the past 50 years.
Inset figure highlights that the timing of the meeting followed the International day of women and
girls in science (11th February 2022). (b) Geographical representation of the 449 scientists and
stakeholders who participated in the "Ocean Carbon from Space" workshop in February 2022. (c)
Gender split of the workshop participants.
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Figure 2: A word cloud designed to show the dominant themes and subthemes emerging from all
priorities identified. Created using a word cloud generator in Python (https://github.com/amueller/
word_cloud).
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