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Globally consistent assessment of coastal
eutrophication
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Eutrophication is an emerging global issue associated with increasing anthropogenic nutrient

loading. The impacts and extent of eutrophication are often limited to regions with dedicated

monitoring programmes. Here we introduce the first global and Google Earth Engine-based

interactive assessment tool of coastal eutrophication potential (CEP). The tool evaluates

trends in satellite-derived chlorophyll-a (CHL) to devise a global map of CEP. Our analyses

suggest that, globally, coastal waters (depth ≤200 m) covering ∼1.15 million km2 are

eutrophic potential. Also, waters associated with CHL increasing trends—eutrophication

potential—are twofold higher than those showing signs of recovery. The tool effectively

identified areas of known eutrophication with severe symptoms, like dead zones, as well as

those with limited to no information of the eutrophication. Our tool introduces the prospect

for a consistent global assessment of eutrophication trends with major implications for

monitoring Sustainable Development Goals (SDGs) and the application of Earth Observations

in support of SDGs.
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Coastal ecosystems provide innumerable services that make
them major environmental and economic assets globally1.
However, their integrity is increasingly threatened by

impacts of human activities2. Nutrient enrichment, for instance,
is known to stimulate phytoplankton productivity. While this
growth of phytoplankton can initially be beneficial to the eco-
system, continuous accumulation of organic matter can lead to
eutrophication of the system with a series of undesirable ecolo-
gical effects that can also be harmful to humans. Defined as the
increase in the rate of organic matter supply to water bodies3 the
definition of eutrophication has been expanded to meet both
scientific and legal requirements4. This cultural eutrophication
associated with excessive or disproportionate nutrient loading is
known for its modifications of nutrient levels and structures
including a selective magnification of nitrogen and phosphorus
supply but a reduction of silica5. These conditions can trigger a
chain of biogeochemical feedback including shifts in phyto-
plankton composition, formation and persistence of harmful algal
blooms (HABs) and the consequent occurrence of hypoxic
waters6–9. The increased incidence of oxygen deficit waters
(hypoxic waters), in turn, can stimulate the proliferation of
hypoxia-tolerant species such as Noctiluca scintillans10,11.
Furthermore, eutrophication can also increase the possibility of
jellyfish outbreaks12, can contribute to ocean acidification7 and to
degradation of shallow water habitats13,14. In the case of sub-
merged vegetation, they can display an array of direct and
indirect responses to nutrient loadings that ultimately may lead to
their loss, as seen in some seagrass meadows13. Therefore,
monitoring and/or assessment of eutrophication is important in
providing the extent and context of eutrophication15–17. Such
information is especially relevant for coastal managers to take the
required management interventions.

Many coastal regions worldwide experience some level of
eutrophication despite that only a few regions with dedicated
monitoring programmes have information of eutrophication
status. Existing tools for eutrophication assessment15,18–20,
although vital for the identification of eutrophication patterns as
well as for understanding the eutrophication causes and con-
sequences, their application entails prohibitively expensive and
intensive field monitoring programmes. Alternatively, water
quality parameters from satellite imagery are often introduced as
effective tools for a synoptic eutrophication assessment21 and
to overcome the spatiotemporal limitations of in situ observa-
tions. Chlorophyll-a (CHL, mg m−3) concentration, a proxy for
phytoplankton biomass, is a commonly used indicator of eutro-
phication as it links nutrient enrichment and the stimulated
phytoplankton productivity22–25. CHL is recognised by the Glo-
bal Climate Observing System as an Essential Climate
Variable26,27. It is an important parameter in the study of the
climate system and associated changes, as well as in the study of
different factors affecting the dynamics of marine ecosystems
including those of anthropogenic origin. In fact, CHL is listed as
one of the parameters for the index of coastal eutrophication
potential in the Global Manual on Measuring Sustainable
Development Goals (SDGs) 14.1.1, 14.2.1 and 14.5.128. To assess
coastal eutrophication trends globally, both levels and trends of
satellite derived CHL are essential. While the few existing
assessment approaches based on satellite data are generally based
solely on CHL levels21,29, the Northwest Pacific Action Plan
Eutrophication Assessment Tool (NEAT) considers both the
levels and trends of satellite-derived CHL17,30. The NEAT was
developed by the Special Monitoring and Coastal Environment
Assessment Regional Activity Centre (CEARAC) of the North-
west Pacific Action Plan (NOWPAP), a part of the Regional Seas
Programme of the United Nations Environment Programme, for
the preliminary eutrophication assessment based solely on

satellite-derived CHL. It is effective in discriminating both
eutrophication potential (see Methods for definitions of eutrophic
and eutrophication) waters as well as those in recovery17.

Our study, therefore, introduces the NEAT as an app con-
structed on Google Earth Engine (GEE) cloud environment31 for
the global screening of coastal eutrophication potential (CEP). To
the best of our knowledge, our app (the Global Eutrophication
Watch) is the first of its kind to provide coastal eutrophication
trends globally. It classifies CEP based on temporal and spatial
patterns of CHL levels as well as trends in annual bloom mag-
nitude allowing for a globally consistent assessment in a way
never done before. Although it neither differentiates the bloom
forming algae nor determines the frequency or duration of the
bloom, it does, however, provide a synoptic view of eutrophic
potential waters (those with high levels of CHL) or waters under
high risk of eutrophication (those with increasing CHL trends)
for prioritised management interventions. The findings not only
are pertinent for management and mitigations of eutrophication,
but also for monitoring SDGs, specifically indicator 14.1.1a
“Index of coastal eutrophication of the SDG 14: Life Below
Water”. This is to conserve and sustainably use the oceans, seas
and marine resources. Further, in addition to putting in-situ
obtained results into a wider context, the findings of this study
can be put into practice by contrasting them with those obtained
from in-situ measurements, model simulations, etc. On the other
hand, this study introduces the first global map of CEP for many
regions lacking routine water quality monitoring. Accordingly,
the information obtained will be vital in guiding the development
of monitoring programmes regionally. This study contributes
towards the use of Earth Observations in support of the SDGs
and the results emphasize the importance of the Global Eutro-
phication Watch as a global framework for eutrophication
monitoring.

Results and discussion
We first introduce a case study in Bohai Sea (Fig. 1a)—a semi-
enclosed marginal sea, one of the China seas, that
has been severely impacted by human activities in the last half
century—to demonstrate the value of the eutrophication
screening tool (cf. 2.1). The Bohai Sea has become eutrophic and
suffers from symptoms of eutrophication that are well-
documented8,9,32. Second, we introduce the global screening of
CEP in section 2.2 using the satellite data from the Moderate
Resolution Imaging Spectroradiometer on Aqua (MODISA),
reprocessing 2018, with a spatial resolution of 4 km, obtained
using the standard ocean colour index algorithm (OCI33; https://
oceancolor.gsfc.nasa.gov/atbd/chlor_a/). The CHL time series
from MODISA are the longest among ocean colour sensors and
are used as the default data for the global assessment.

The OCI algorithm provides adequate CHL retrieval in the
global open ocean. In optically complex coastal waters, like in the
Bohai Sea, however, the optically active constituents (e.g.,
coloured dissolved organic matter) and phytoplankton may vary
independently34, so reliable CHL retrievals may not be
achieved35,36. Therefore, in 2.1 we adopted a CHL product that
uses a regional algorithm. This regional product was obtained
using the Yellow Sea Large Marine Ecosystem Ocean Color
Project (YOC) algorithm, an empirical algorithm appropriate for
the Bohai Sea as it alleviates the impacts of suspended sediments
and coloured dissolved organic matter on CHL retrievals35. The
YOC CHL data span a 22-year period (1998-2019) and have a
spatial resolution of 1 km. Further details of the datasets are given
in Methods, 3.1.

The definitions adopted for the terms eutrophic and eutro-
phication potential, as discussed in the following sections, are
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given in the Methods section (3.3). Briefly, eutrophic potential
will refer to any productive system characterised by high CHL,
whereas eutrophication potential refers to the process of
becoming eutrophic or a progression of an already eutrophic
water body. Oligotrophication potential will be the reverse of
eutrophication potential.

Assessment of coastal eutrophication potential: a case study in
the Bohai Sea. The assessment results obtained from the global
eutrophication watch (Fig. 1) comparing two assessment periods,
1998–2015 and 1998-2019, revealed that some coastal waters
associated with high CHL (≥5 mg m−3) and increasing temporal
trends (HI) have significantly shrunk. In contrast, low CHL
(<5 mg m−3) waters with no trends associated (LN) and low CHL
waters with decreasing trends (LD) have expanded in the Bohai
Sea. Overall, the area covered by pixels associated with increasing
trends, that is, eutrophication potential (LI and HI) shrank ~27%,
whereas for those associated with oligotrophication potential (LD
and HD) had a threefold increase between the two assessment
periods (Fig. 1). This, in part, may be indicative of improving
water quality. Reports suggest that there have been a series of
control measures implemented in China to reduce nutrient
emissions from terrestrial sources. These measures curbed the
worsening trend of coastal eutrophication in the China seas25,
and possibly contributed to the gradual decrease in red tides
annual frequency and dramatic decrease in the red tides affected
area since 20039,25. Besides the human interventions discussed
above, natural climate variability also plays a role in the variations
of CHL37. Zhai et al.37discussed the influence of sea surface
temperature and rainfall on CHL long-term changes. Warmer
temperature anomalies, present during the positive phase of the
Pacific Decadal Oscillation (PDO), and concurrent with negative
rainfall anomalies in the Bohai Sea, were suggested to be con-
ducive to negative CHL anomalies through their negative impacts
on nutrient fluxes into the sea. Transient factors such as water
exchange between the Bohai Sea and the Yellow Sea also mod-
ulate the variations of CHL38. Additionally, the observed changes
in CHL trends between the two assessment periods could also be
an indication of the sensitivity of trend detection to the data
length. This study highlights the usefulness of our tool, which
identifies the spatial patterns of eutrophication potential using
CHL levels and trends over a larger spatial and temporal scales
and condensed in a single map.

The patterns identified in Fig. 1 are further corroborated by
reports of water quality of the Bohai Sea. As already stated, most
of the bays in this sea have been severely impacted by human
activities. Particularly, high inputs of dissolved inorganic nitrogen
have been observed in recent decades5,8,9. Interestingly, the
increase in nitrogen inputs continued even when the total river
discharge consistently decreased in relation to that of the 1960s9.
As a result, several ecological disasters such as the incidence of
red-tides and the occurrence of hypoxia and/or anoxia
intensified9,39. In the case of the assessment map in Fig. 1, a
patch of HI was effectively identified in the coastal waters off
Qinhuangdao. This region has been found to be an oxygen
minimum zone in the Bohai Sea. Further, the waters adjacent to
this patch constitute a hypoxia hotspot8. The above illustrates the
suitability of our tool in identifying the spatial distribution of CEP
with the application of CHL from satellite ocean colour remote
sensing.

The number of pixels associated with CHL increasing trends
significantly decreased between the two assessment periods
(Fig. 1) indicating that there might be some large-scale
phenomena driving this shrinkage of increasing trends in the
whole Bohai Sea. Atmospheric deposition, which acts on a much
larger scale, can be an important nutrient source to the ocean40.
In the Bohai Sea, the influence of atmospheric deposition is also
significant. Observations and simulation results suggest that the
atmospheric contribution to dissolved inorganic nitrogen can
range from ~25% to 54% of the total39,41. As for the flux of
particulate phosphorus entering the sea through windblown dust
storms, it can be >500 times greater than on normal days39. In
recent years, however, declines in the frequencies of dust storms
and the volume of China’s emissions of major anthropogenic air
pollutants have been observed39,42. The decline in emissions
results from the introduction of China’s clean air policies in 2010,
driving significant reductions in pollutant emissions in the first
seven years of its inception42. As shown in a modelling study
assessing the effects of atmospheric nitrogen deposition on the
marine ecosystem in the Bohai Sea41, the inclusion of the
atmospheric deposition can cause an average increase in
phytoplankton biomass of >50%. It naturally follows that our
latter assessment (Fig. 1b), which includes recent years when both
dust storms and anthropogenic emissions have markedly reduced,
might reflect the long-term changes in atmospheric nutrient
deposition.

Other large-scale climate processes such as El Niño (La Niña)
and PDO have also been implicated in the dynamics of the Bohai
Sea ecosystem37,38. Fan et al.38 analysed the spatial and temporal
variations of particulate organic carbon (POC) in the Yellow-
Bohai Sea over the period 2002–2016. They suggested that the
above climate indices impact the surface POC through their
influence on water exchange between the Yellow-Bohai Sea and
the East China Sea. This water exchange is controlled by the East
Asian winter monsoon and its influence on the Yellow Sea Warm
Current. The fact that these factors appear to have an indirect
influence38 suggest that atmospheric deposition might be a major
driver of the observed large-scale decrease in CHL levels and
trends.

As introduced above, the study by Zhai et al.37 used a 16-year
record of MODISA CHL and observed spatially coherent
increasing CHL trends from 2003 to 2011 and decreasing trends
from 2012 to 2018 in the Bohai Sea. They suggested that
these changes were mainly controlled by variations in sea surface
temperature and rainfall, which are linked to the PDO. In positive
PDO phases, positive temperature (negative rainfall) anomalies
prevail in the Bohai Sea. These conditions lead to decreased
dissolved inorganic nitrogen content in the surface layers due to
suppressed vertical nutrient diffusion and reduced land-sourced

Fig. 1 Map of coastal eutrophication potential (CEP) in the Bohai Sea. LD,
LN, and LI depict the status as being low CHL (α < 5 mg m−3) with
decreasing trend, no trend and increasing trend, respectively. HD, HN and
HI indicate high CHL (α ≥ 5 mg m−3) with the three above-mentioned
trends, respectively. a Preliminary assessment of CEP for the period
1998–2015. b Same as a but for the period 1998–2019. The rectangle in
magenta (b) shows the location of Bohai Sea.
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nutrient fluxes37. Factors such as changes in nutrient levels and
structures have major impacts on CHL long-term changes.
Wang et al.39 showed that the summer concentration of dissolved
inorganic nitrogen in the Bohai Sea continuously increased from
the 1990s, while that of phosphorus exhibited a decreasing trend
in the period 1978–2016. So, the nitrogen/phosphorus ratio
mostly followed that of nitrogen content39. As a result, the
nutrient regime of the Bohai Sea has shifted from nitrogen-
limitation before the 1990s to potential phosphorus-limitation
thereafter8,9,39.

Although we speculate about the possible factors driving the
CHL variability observed in the Bohai Sea, the changes in
nutrients levels and structures as well as the CHL response in a
eutrophic environment are complex5,9. At this point, we
emphasize that our procedure is simply meant for the screening
of CEP. The mechanisms behind the identified patterns are
beyond the scope of the tool and that should be supplemented by
follow-up studies. Here, we stress the use of CHL estimates from
ocean colour remote sensing as the preliminary parameter for a
rapid and a consistent assessment of CEP globally. The
significance of this approach is in the use of a single parameter
that condenses the spatial and temporal information which allows
the identification of areas in potential need of preventive
management or eutrophication mitigation efforts.

Assessment of coastal eutrophication potential: global ocean.
The global map of CEP (Fig. 2a) is composed mostly of LN and HI
(Table 1). Pixels associated with high CHL are mostly found in
coastal and inland waters. Here, we only focus on the coastal
waters (depth ≤200 m). To get an intuition of the global dis-
tribution of area covered by each eutrophication potential waters,
the area estimate was obtained through the combined use of
bathymetry data and the marine biogeochemical provinces43. Our
analysis suggested that globally LI and HI (~799,305 km2) occupy a
larger fraction of coastal waters than LD and HD (~602,406 km2).
The major fraction of both LD-HD and LI-HI combined was
found in coastal provinces of Asia (SUND, Table 1). However,
the HI class was predominant in the Atlantic Ocean where some of
the well-known dead zones, the Gulf of Mexico and the Baltic Sea,
are found16,44. Besides the above cases, there are many other
coastal seas which were flagged as eutrophication potential (both LI
and HI) and are distributed across the globe (Table 1). Although
Table 1 also includes coastal upwelling regions, their contribution
is relatively smaller than non-upwelling regions. These examples
emphasize the utility of the introduced tool in preliminary eutro-
phication assessment. Not only was the tool able to identify known
areas of eutrophication, but also those potentially suffering from
the effects of eutrophication in addition to non-reported locations
experiencing some level of eutrophication6,45. Therefore, the
introduction of our Global Eutrophication Watch, a rapid and
consistent preliminary assessment of CEP is now globally feasible.
This tool should instigate a concerted action against the pro-
liferation of coastal eutrophication.

In addition to the global map of eutrophication potential, we
also compared the assessment results based on our improved
CHL introduced in 2.1 vs. the standard MODISA CHL product
for the period 2003–2019. Overall, we found the CEP waters
identified with YOC CHL (Fig. 2b) were also apparent in the
standard MODISA product (Fig. 2c, d). However, LD waters
appeared more than LI in the map generated using the standard
CHL. The retrievals of CHL in highly dynamic and optically
complex waters such as in coastal waters are challenging. The
existing algorithms for atmospheric correction are robust in the
open ocean where the ocean colour covaries with phytoplankton
concentration46. In the case of Bohai Sea, we have the YOC and

some other statistically based CHL retrieval algorithms36 that best
represent the phytoplankton variability. We believe that different
regions may also have a CHL product that more accurately suits
the characteristics of the designated area. The global application
of our methodology in preliminary assessment of CEP should not
be contingent on the global standard CHL product. In our GEE-
based tool, the Global Eutrophication Watch, there is an option
for users to enter the path to their asset (dataset in the GEE) of
monthly CHL time series. This monthly CHL data can then be
used in the assessment instead of the default datasets.

While the focus is on the preliminary assessment of
eutrophication potential, oligotrophication potential (LD, HD)
are equally worthy of mention. Under the warming climate, the
tropics and subtropics are likely to experience enhanced
stratification and reduced nutrient supply to the euphotic layer.
As a result, phytoplankton growth will be limited with long-term
decline (Fig. 2a) associated with decreasing primary production47.
In coastal and enclosed seas, measures to reduce nutrient loading
can lead to decreased phytoplankton concentration or reduce the
eutrophication and associated ecological disasters such as the
incidence of hypoxic events, though other issues like oligotro-
phication can emerge48. The Seto Inland Sea of Japan experienced
severe eutrophication during the high economic growth period of
the 1960s and 1970s49, but now is reported to be undergoing
oligotrophication48. Significant reductions in nutrient loading
along with loss in biodiversity are reported to be the precursors of
oligotrophication. Moreover, in the oligotrophication process,
changes in the food web structure are suggested to have caused a
decrease in fishery production of the Seto Inland Sea50.

In this study, we introduced the Global Eutrophication Watch,
a tool for a preliminary eutrophication assessment solely based on
satellite-derived CHL. Although different eutrophication assess-
ment methods exist, especially comprehensive eutrophication
assessment methods15,19,20, their global application is compli-
cated by the need for extensive and intensive field observation
campaigns. So, the significance of our introduced tool is in its
simplicity and scale. It only uses satellite derived CHL to provide
a systematic assessment of CEP at a macroscopic (global) and
microscopic (regional) levels as well as with sufficient temporal
information to allow coastal water managers make informed
decisions on where to focus their eutrophication management
efforts. In this method, we stress the importance of CHL levels
and trends. This combination provides a simple but robust
assessment scheme. For instance, low CHL but increasing trends
(LI) may inform managers about required management actions to
prevent future ecological disasters. This warning might go
missing in case only CHL levels21 are considered. On the other
hand, with the sole use of CHL trends, high CHL but no trend
waters (HN) can be overlooked. CHL levels are often linked to
phytoplankton biomass, which is also linked to the health of the
ecosystem. So, our methodology is inexpensive and robust for a
global assessment of CEP.

Overall, we expect this contribution to aid in the many global
efforts acting to counter the impacts of nutrient pollution and
eutrophication. It is well known that management planning
efforts should also incorporate available knowledge, and adapt to
changing environmental conditions, while evaluating the effec-
tiveness of implemented measures. Thus, our Global Eutrophica-
tion Watch tool, with its ready-to-use map of up-to-date
information of the status of CEP, provides the required scientific
knowledge to support monitoring programmes, adaptive manage-
ment, and decision-making. It is also useful for educational
purposes and in raising awareness, as it is simple and uses very
few resources. A simple internet connection, either on a
smartphone or computer, allows one to evaluate eutrophication
trends worldwide.
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Fig. 2 Map of CEP in the global ocean and in the Bohai Sea. a Preliminary assessment of CEP in the global ocean for the period 2003–2019 based on
MODISA global dataset. The CHL threshold is same as in Fig. 1. b Preliminary assessment of CEP in the Bohai Sea based on the YOC algorithm for the same
period as in a but with spatial resolution of 1 km. c Same as b but for MODISA 1 km spatial resolution. d Same as b but for MODISA 4 km spatial
resolution. The southern and northern regions with few observations (<70% in the 17-year period) were masked. The GEE App is accessible through the
link https://eutrophicationwatch.users.earthengine.app/view/global-eutrophication-watch.

Table 1 Global distribution of the area coverage estimates of each eutrophication potential class based on the coastal
biogeochemical provinces (https://www.marineregions.org/sources.php#longhurst) as in Longhurst (2006)43.

Total area estimate [km2]

Province name Code Ocean LD LN LI HD HN HI

Alaska Downwelling Coastal Province ALSK Pacific 9920 183,293 2827 148 8787 227
Australia-Indonesia Coastal Province AUSW Indian 9652 806,935 69,319 202 3490 327
Benguela Current Coastal Province BENG Atlantic 437 43,847 7938 1355 67,213 4542
Brazil Current Coastal Province BRAZ Atlantic 6424 416,745 43,420 659 57,375 10,164
California Upwelling Coastal Province CCAL Pacific 15,017 64,733 1328 903 30,438 1137
Canary Coastal Province CNRY Atlantic 4481 121,800 5994 3323 74,124 2981
Caribbean Province CARB Atlantic 23,965 711,105 41,763 1464 75,830 15,257
Central American Coastal Province CAMR Pacific 51,493 168,289 6862 496 5196 103
Chile-Peru Current Coastal Province CHIL Pacific 6559 108,325 3615 1450 46,428 2435
China Sea Coastal Province CHIN Pacific 38,415 863,543 56,532 595 31,508 4546
East Africa Coastal Province EAFR Indian 9790 257,185 6347 148 7435 262
East Australian Coastal Province AUSE Pacific 6048 289,005 18,183 58
East India Coastal Province INDE Indian 15,941 214,052 4760 738 20,183 248
Guianas Coastal Province GUIA Atlantic 12,525 354,734 22,682 2800 122,381 9079
Guinea Current Coastal Province GUIN Atlantic 4119 150,981 25,115 1109 85,136 11,468
Kuroshio Current Province KURO Pacific 7552 326,373 25,766 371 4696 89
Mediterranean Sea, Black Sea Province MEDI Atlantic 10,327 426,123 38,027 481 5458 448
New Zealand Coastal Province NEWZ Pacific 4312 85,754 2859
Northeast Atlantic Shelves Province NECS Atlantic 45,583 696,349 36,761 3568 190,774 19,073
Northwest Arabian Upwelling Province ARAB Indian 14,759 128,285 4123 2,117 30,154 1188
Northwest Atlantic Shelves Province NWCS Atlantic 27,986 834,160 39,927 1082 55,701 2847
Red Sea, Persian Gulf Province REDS Indian 56,697 353,303 4,188 417 4,681 477
Southwest Atlantic Shelves Province FKLD Atlantic 11,093 709,303 94,027 13 698 141
Sunda-Arafura Shelves Province SUND Pacific 166,659 3,298,508 125,220 2,758 71,585 7181
West India Coastal Province INDW Indian 13,337 248,278 16,975 3120 28,645 528
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Methods
CHL datasets. For the global detection of CEP, we used the currently available 17-
year record of daily CHL data from the Moderate Resolution Imaging Spectro-
radiometer on Aqua (MODISA), reprocessing 2018 (https://
oceancolor.gsfc.nasa.gov/reprocessing/r2018/aqua/), and with a spatial resolution
of 4 km. The data set is stored in the App’s asset (see 3.4 below) and its temporal
extension is updated on a yearly basis. In addition to these yearly updates, the data
sets will also be updated following NASA (National Aeronautics and Space
Administration, U.S.) periodic reprocessings that improve product quality with
advances in algorithms or sensor calibration knowledge.

Besides the global screening of CEP, a case study was developed in the Bohai
Sea (cf. 2.1) to demonstrate the usefulness of the introduced tool. In coastal regions,
like the Bohai Sea, CHL estimates based on the standard ocean colour algorithms—
like the MODISA OCI algorithm (https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/)
—often fail. The reason being that the optical properties of these complex waters
(also denoted case 2 waters) are influenced not just by phytoplankton but other
optically active constituents (including coloured dissolved organic matter), and
these may vary independently of one another34. So, for this case study, we used a
regionally tuned CHL dataset obtained as monthly composites from the Marine
Environmental Watch of the NOWPAP (https://ocean.nowpap3.go.jp/) with
spatial resolution of 1 km. These CHL data were only available in the NOWPAP
region.

The above regional CHL data were obtained using the YOC algorithm, designed to
alleviate the impacts of coloured dissolved organic matter and suspended sediments on
CHL retrievals35. The YOC product, as used in this study, was a blending of YOC CHL
and CHL based on OC algorithm combined with the colour index (CI) algorithm, that
is, the OCI algorithm33. The switching between the two was determined by the values
of normalised water leaving radiance (nLw, mWcm−2 mm−1 sr−1) at 555 nm51. The
YOC algorithm was applied in waters with high nLw555 (>2.5), whereas the OCIs
were applied in waters with low nLw555 (<1.5). A smooth transition between the two
extremes was ensured by a linear combination in the mid-range of nLw555
(2.5>nLw555 > 1.5). Accordingly, adequate CHL estimates could be obtained in waters
with high nLw that otherwise would be overestimated35,51, and in such cases the YOC
CHL had superior quality with better spatial and temporal variations relative to the
standard products51–53. Therefore, this improved CHL is of critical importance to the
case study presented here. The YOC algorithm was originally developed using the Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) sensor bands35. Its application to
MODISA and to Medium Resolution Imaging Spectrometer (MERIS) data was based

on the regression between SeaWiFS and MODISA (MERIS) bands and band ratios.
In this study we used the CHL data based on the OCI algorithm. Please refer to
Terauchi et al.17 for additional details on the computation of regression coefficients.

Given that the global level 3 data constitute our default asset for the global
eutrophication assessment, following the case study in the Bohai Sea (2.1), in 2.2 we
briefly compare the trends estimated using the YOC CHL with those obtained from
the global data readily obtainable from NASA. This comparison is essential given
that the NASA global standard products are more accessible than any other lower-
level (such as level 2) data to non-expert users, including water quality managers
and decision makers. In addition, it is the least expensive way for a rapid
eutrophication assessment before a thorough, in-situ based investigation can
follow.

Trend analysis. The estimation of trends at pixel level is based on the Sen’s slope
method54—a non-parametric trend estimation method—which detects the pre-
sence of monotonic trends in a yearly data record at the 90% significance level.
Nonparametric tests provide higher statistical power in the case of nonnormality,
as is the case with CHL, and are robust against outliers and large data gaps. Trends
estimated below a critical threshold are treated as N (no trend). Moreover, as the
focus is on the detection of eutrophication potential with consideration of it being a
process occurring over a long-time scale (on the order of years), the temporal
trends in CHL are estimated from annual maximum obtained from monthly
composites of each considered year. The choice is partly motivated by the fact that
the evaluation of existence of monotonic trends can also be statistically challenged
by short-term variability in CHL. So, by using CHL annual maximum from
monthly composites, we effectively remove the seasonal and short-term vari-
abilities. Doing so, we focus on the CHL peak season. Consequently, the obtained
trends reflect the interannual behaviour of the phytoplankton bloom season,
assuming that the bloom is manifested as high biomass.

NEAT methodology as a global screening tool of coastal eutrophication. In this
study we used the NEAT methodology to develop a GEE-based tool for the global
detection of CEP (the Global Eutrophication Watch) using satellite-derived CHL. In
its screening procedure, the NEAT—a robust satellite-based preliminary assessment
tool of eutrophication potential—unifies, in a single map, the temporal and spatial
information of the area under consideration. It combines the levels and trends of
CHL to generate six patterns of water quality17. The CHL levels generate two

Fig. 3 Global eutrophication watch app interface. The left panel shows the control panel of the app. The map of CEP in the NOWPAP region based on
MODISA global dataset is shown in the middle. The right panel shows the CHL max time series of a select point on the map. The CEP classes are also shown.
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patterns based on the CHL concentration (α [mg m−3]), the first being composed by
CHL lower than the threshold α, CHL < α (L), and the other by CHL ≥ α (H). The
trends have three patterns, namely: waters with decreasing trend (D), with no trend
(N), or with increasing (I) trend. In this way, a composite map of six classes can be
generated, viz. LD, LN, LI, and HD, HN, HI. Before moving on to the explanation of
the meaning of each class, it is worth defining the terms adopted in this paper for
clarity. Eutrophic potential will be used to indicate a productive system with high
CHL, whereas eutrophication potential refers to the process of becoming eutrophic
or a progression of an already eutrophic water body. In addition to the above
definitions, we also introduce oligotrophication potential which is associated with the
progression to a least productive water body. Hence, pixels flagged HD, HN and HI
are eutrophic potential with HD indicative of systems under recovery, whereas in LI
and HI are eutrophication potential. In HI, the conditions may worsen as the water
body is already eutrophic potential. Moreover, LD is suggestive of reversed eutro-
phication, that is, further oligotrophication. LN and HN are indicative of L and H
CHL but stable conditions over the analysis period.

It is important to note that classification of waters as being L or H is subject to
the consideration of the threshold α, which will vary depending on the conditions
of each region. However, the same is not the case for D, N or I. Trends will most
probably be impacted by the length of the analysis period and/or other
environmental factors controlling the variability of CHL rather than a given α. As
such, both LD, LI and HD, HI provide critical information about the
eutrophication of the system under scrutiny. The global eutrophication watch,
therefore, not only provides important information of areas potentially in need of
preventive management efforts, but also helps in evaluating the impacts of
measures taken to reduce the effects of eutrophication. The NEAT procedure uses a
threshold of 5 mg m−3, and this threshold is computed based on the most recent
3-year mean data of the analysis period. Nevertheless, this threshold is not fixed,
and users are able to adjust the level and the composite period to area specific
values as different regions may have different thresholds according to the region’s
background.

In the above-introduced approach we model the interannual changes in
phytoplankton bloom magnitude (CHL annual maximum) to assess the
eutrophication of a coastal ecosystem. The main purpose is the identification of
waters with symptoms of coastal eutrophication, which may include the incidence
of HABs or other related issues5,14,25. Although HABs can be a direct or indirect
manifestation of eutrophication, the interactions between the two are complex5,9,24.
HABs, often, associate with specific types of algal blooms such as cyanobacteria,
Karenia spp., etc29,55,56. But CHL, which we used for our index of eutrophication,
is present in both HAB and non-HAB blooms. Although satellite-derived CHL has
been found, in some cases, sufficient to detect HABs29,56, often additional
information (such as the knowledge of local CHL patterns) is necessary to make the
link between the two. So, while our approach can identify patterns of algal bloom
magnitude over the years and relate them to eutrophication potential, neither does
it discriminate the bloom forming algae nor does it determine the frequency or
duration of the bloom. As such, this approach can only provide a context of areas
with symptoms of water quality deterioration, and therefore with potential for
HAB occurrence (cf. 2.1) without a priori information of the considered ecosystem.

Successful HAB detection or prediction often goes beyond the sheer use of
CHL, and in most cases in-situ observations or more complex approaches are
required. For example, Stumpf et al.29 used CHL anomaly to flag waters with
potential for Karenia brevis blooms in the Gulf of Mexico. Their CHL anomaly was
computed as a difference between a single image of satellite-derived CHL and a
two-month average image taken two weeks prior to the image being considered.
While their procedure was successful in Karenia brevis identification in the Gulf of
Mexico, such methodology would be limited in other environments with different
background or with a different Karenia species29,55.

The merits of our eutrophication screening approach are in its use of CHL levels
and trends. If only the CHL trends are considered, the magnitude of the problem
would be overlooked. On the other hand, if only the levels are considered, only the
spatial dimension of the problem would be captured21,29,57 and thereby
overlooking, for instance, LI waters. So, here we reemphasise the importance of the
spatial and temporal dimensions provided by satellite derived CHL and condensed
in a single map by this approach, which retains both space-time information. Thus,
a synoptic view of eutrophication potential is gained prior to any expensive field
sampling, although vital to complementing satellite information.

The GEE Global Eutrophication Watch App. The Global Eutrophication Watch
(Fig. 3) on the GEE is composed of three main fields: (1) the data-set specification
panel, (2) the panel for selection of trend detection intervals and (3) the specifi-
cation of the CHL composite interval and the threshold selection panels. The data
panel allows the selection of two default data sets, that is, MODISA and YOC CHL.
In practice, only YOC CHL can be checked as MODISA is the de facto default.
Moreover, this panel also includes a box for users to enter the path to an Earth
Engine asset of monthly composites of CHL for the tool to read and use for the
assessment. The option is especially important given the challenges associated with
CHL retrievals in the coastal waters. Unlike in the open ocean, where phyto-
plankton dominate the optical properties or co-vary with other optically active
constituents, in coastal waters phytoplankton may vary independently of the
optical constituents, and thus the global CHL product may fail to resolve

phytoplankton variations58. So, this option can be understood as a plug-in that
allows users around the globe to conduct the eutrophication assessment based on
their own datasets. This feature enables users to incorporate regionally improved
CHL data while keeping the assessment procedure consistent. This has the
immediate result of allowing consistent results to be obtained from a spectrum of
ecosystems with different characteristics. The next panel is used to specify the trend
detection interval, the start and end years. This panel also includes a button to
toggle views, that is, to split the map into two windows providing a capability for
comparative assessment. The impact of inclusion of more years in the trend
detection analysis, for instance, can be verified by simply using two different year
intervals. Finally, the last user defined parameters are for the CHL threshold.
Controls for start and end dates are available for users to indicate the time interval
to be used to compute the mean CHL. This is used in conjunction with the cut-off
level (threshold) to split L vs. H CHL waters.

Data availability
The satellite derived CHL data used in (2.2) are available from the NOWPAP Marine
Environmental Watch website at https://ocean.nowpap3.go.jp/. The data used in (2.3) are
available from the website of the NASA’s Ocean Biology Processing Group at https://
oceancolor.gsfc.nasa.gov/. The eutrophication potential maps in Fig. 1 through 3 can be
obtained via the Google Earth Engine global eutrophication watch app at https://
eutrophicationwatch.users.earthengine.app/view/global-eutrophication-watch The data
of coastal biogeochemical provinces are available from the Marine Regions at https://
www.marineregions.org/sources.php#longhurst. The bathymetry map used in
combination with biogeochemical provinces was created using Windows Image Manager
(https://www.wimsoft.com/).

Code availability
The Earth Engine code used for trend analysis based on the Sen’s slope method is
available at the Google Earth Engine community tutorials (https://
developers.google.com/earth-engine/tutorials/community/nonparametric-trends).
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